Despite the proven effectiveness of international travel restrictions imposed during the COVID-19 pandemic, they also had significant costs. Countries that are heavily dependent on foreign labor tend to adopt less stringent border controls to offset the economic costs caused by the reduction of the immigrant workforce. Moreover, the strength of entry restrictions is determined by a government’s capacity to manage waves of infection by means other than entry bans. Based on theoretical and empirical investigations, we offer policy implications on how to control the spread of infectious diseases while minimizing the costs associated with the international travel restrictions.
Founded in 1989, the Korea Institute for International Economic Policy (KIEP) is a government-funded research institute established to conduct studies, research and analyses of global economic issues that impact the Korean economy, and to help guide the nation toward effective international economic policies.

KIEP is responding to recent developments in the global economy, conducting a wide range of research projects that will offer significant implications for the government’s New Northern and New Southern policies, a new trade policy regime that aims to support inclusive growth, and international macro-financial initiatives in line with the unfolding 4th Industrial Revolution.

We are committed to introducing policies that can elevate the nation’s capacities for innovative growth, and to promote international discourse on issues that impact the global community, as we ensure that KIEP remains an influential global think tank that leads the formulation of international economic policies.

Since its founding, KIEP has conducted insightful studies on newly emerging economies and global regions, and has dedicated itself to the development of trade negotiations and national agendas.

KIEP will continue its policy research on global and regional economies, trade investment and international macro-finance, with the aim of contributing to sustainable growth as a responsible research institute, and establishing itself as a nationally reliable institute through the dedicated efforts of all KIEP members.

Call for Papers for the East Asian Economic Review

With great pleasure, the East Asian Economic Review is welcoming submissions.

AIMS and SCOPE

The East Asian Economic Review is an economic journal, for the promotion of interdisciplinary research on international economics. Published as a quarterly by the Korea Institute for International Economic Policy, a Korean government-funded economic think-tank, the Journal is global in perspective and covers both theory and empirical research.

The Journal aims to facilitate greater understanding of all issues pertinent to Asia's diverse economy through publication of rigorous analyses by renowned experts in the field. The EAER connects policy and theory, providing empirical analyses and practical policy suggestions for the economies in the region.

TOPICS COVERED

The East Asian Economic Review brings together articles from many different realms of economics at both regional and global levels. Issues relevant to Asia's diverse economy are the major focuses. Specific areas of interest include, but are not limited to:

- Trade and Investment Issues
- Economic Integration
- APEC
- ASEAN
- ASEM
- International Finance
- Liberalization of Financial Services and Capital
- International Cooperation for Korean Unification.

NOTE FOR AUTHORS

SUBMISSION GUIDELINE:
Refer to our website www.eaerweb.org and Click “Submission” menu at the top of the main page.

SUBMISSION DEADLINE:
The Journal is published every March, June, September and December of each year and submissions are accepted for review on an ongoing basis.

REVIEW PROCESS:
We have introduced a “fast-track” system, which takes four to five weeks on average from submission to the first round review in order to provide quick and authoritative decisions to the authors. In general, the Journal’s manuscript decision process includes submission, editorial decision on whether the paper should be reviewed, peer review, decisions after review, revision, acceptance in principle, final submission and acceptance, proofs, advance online publication, and print publication.

For further information regarding submission, Contact EAER Editorial Office:
[30147] 3rd Floor, Building C, Sejong National Research Complex, 370 Sicheong-daero, Sejong-si, Korea
Tel: 82-44-414-1213 FAX: 82-44-414-1144
Email: eaer@kiep.go.kr
Website: www.eaerweb.org

AWARD FOR EAER

The East Asian Economic Review Award is given annually to articles that have made exemplary contributions to advance the public as well as academic understanding of international economics. Every article published in the Journal is given a honorarium of KRW 2,500,000; and annual nominations for the outstanding and noteworthy articles include KRW 5,000,000 prize and a detailed nomination statement describing how the selected papers have contributed to the knowledge of international economics.
The Relationship between COVID-19
Entry Restrictions and Immigration

Youngook Jang and Donghee Joe
The Relationship between COVID-19 Entry Restrictions and Immigration
In this paper, we investigate the relationship between COVID-19 entry restrictions and dependence on immigrants. In response to the global COVID-19 pandemic, countries worldwide implemented international travel restrictions to reduce the entry of infected individuals. These measures included entry and exit bans, mandatory quarantine of travelers, and vaccination requirements, significantly altering global mobility patterns. Despite their proven effectiveness, entry restrictions also impose substantial economic costs, particularly evident in the form of reduced immigration and subsequent labor shortages in sectors reliant on immigrant labor. We introduce a theoretical framework to shed light on the factors influencing the determination of entry restrictions, encompassing both health and economic considerations. Empirical analyses reveal that countries heavily dependent on foreign labor are inclined to adopt less stringent border controls, balancing the economic costs associated with reduced immigrant workforce. Moreover, we argue that the strength of entry restrictions is determined by a government’s capacity to manage infection waves through means other than entry bans. Finally, we offer policy implications based on our research, on how to control the spread of infectious diseases while minimizing the costs imposed by reducing immigration and the cost imposed on the immigrants themselves.

Keywords: COVID-19; entry restrictions; immigration policy; immigrant workforce

JEL Classification: F22, I18, J61
Contributor

Youngook Jang
Research fellow at the Korea Institute for International Economic Policy (KIEP). He completed his PhD in Economic History at London School of Economics and Political Science in 2019, with a thesis on migration and ethnic diversity in the Soviet and post-Soviet space. Before joining KIEP, he was a post-doctoral research fellow at Stellenbosch University, South Africa. His research area includes migration, demography, labor market, and more recently, inter-EU and international trade and the economic impact of COVID-19 and climate change.

Donghee Joe
Professor at Jeonbuk University. His research focus is on applied microeconomics, political economy and European case studies. A graduate from Seoul National University, he worked for the Bank of Korea and completed his PhD in economics at Universite Toulouse 1 in France. He was also a research fellow and Head of Europe Team at KIEP. His publications include “Discipline by turnout” and “Turnout in the Time of Corona: Evidence from the Legislative Elections in Korea” among many.
Contents

Executive Summary ... 3
1. Introduction ... 9
2. Theoretical Framework 12
3. Data and Methods .. 16
4. Results .. 19
5. Policy Implications ... 24
6. Conclusion ... 27
References .. 28
Tables

Table 1. Summary statistics for main variables ... 18
Table 2. Ordered logistic regression results: without interaction terms 19
Table 3. Ordered logistic regression results: with interaction terms 21
Table 4. Ordered logistic regression results:
with net migration per 1000 population ... 22
Figures

Figure 1. Graphic illustration of Prediction 2 ... 14
Figure 2. Correlation between Share of Foreign Population and Strictness of
 Travel Restrictions, Europe ... 20
The Relationship between COVID-19 Entry Restrictions and Immigration

Youngook Jang* and Donghee Joe**

1. Introduction

In response to the COVID-19 pandemic, many countries introduced international travel restrictions to curb the entry of infected individuals. These restrictions, which have been implemented worldwide, include measures such as entry and exit bans, mandatory quarantine for travelers, and entry vaccination requirements. When COVID-19 began to spread rapidly in Wuhan, China since January 2020, the US imposed entry restrictions on travelers from all regions of China,1 and other countries soon followed with similar measures as the pandemic spread. The entry restrictions were introduced whenever the new variants discovered and began to spread. By November 2022, countries such as the US, the UK, Japan, Australia, and many others tightened the border controls and strengthened the quarantine measures for the travelers coming from South Africa, Botswana and the neighboring countries where the Omicron variant of SARS-COV-2 was believed to be emerged.2 South Korea, which never closed its border fully during the COVID-19 pandemic, still implemented screening and quarantine

* Korea Institute for International Economic Policy. yojang@kiep.go.kr
** Jeonbuk University. dongheejoe@gmail.com
measures for inomers from the places exposed to infection. A notable and most recent case would be the strengthening of entry screening measures and visa issuance against travelers from China following the relaxation of the Chinese “zero Covid” policy in January 2023.3

Entry restrictions are evaluated to be effective in preventing the cross-border transmission of infectious diseases. A systemic review of empirical studies on the effectiveness of international travel restrictions found that 9 out of 15 studies reported the negative association between the spread of COVID-19 and travel ban (Mendez-Brito et al. 2021). One example of this is Haug et al. (2020), which estimated that international border restrictions reduced the effective reproduction number of SARS-COV-2 by 56% (Haug et al. 2020). Several studies, however, argue that international travel ban would not be effective if it is not combined with other social distancing measures (Chinazzi et al. 2020; Russell et al. 2021). It is highly likely that public health authorities around the world would reinstate entry restrictions in response to the next pandemic.

While the necessity of entry restrictions for public health is recognized, these policies have economic impacts that are comparable to their potential benefits. Deb et al. (2022) show that international travel restrictions are among the most effective measures in curbing infections and reducing fatalities, but they are also associated with the highest economic costs at the same time (Deb et al. 2022). One channel of these costs would be the decline in immigration and consequent reduction in immigrant workforce. International travel restrictions, mobility restrictions and stay-at-home requirements all exhibit a relatively strong relationship with declines in immigration (González-Leonardo et al. 2023). Sectors heavily reliant on tourism and hospitality experienced sharp declines in income, coupled with challenges of labor supply shortages (Gursoy and Chi 2020; Kalantaryan et al. 2020). Migrant workers faced disproportionate disruptions to mobility, employment, income, and health during the pandemic as entry restrictions were implemented worldwide (Berardi et al. 2022; Hussein 2022; Martin and Bergmann 2021; Ullah et al. 2021). Therefore, the implementation of immigration control policies during health crises requires prior cost and benefit analysis, balancing between minimization of health consequences with mitigating socio-economic damage.

We examined the factors affecting decisions on COVID-19 related immigration policies. While many countries claim that they “follow the science” when introducing the COVID-19 policy measures, politics and the economy always influence the decision-making (Hilgartner et al. 2021; Popic and Moise 2022; Stevens 2020). In this paper, we argue that entry restrictions, too, were determined beyond science. While there has been literature studying the costs and benefits of entry restrictions separately as reviewed above, few studies paid attention to the decision-making process in depth. Drawing on the insights of Jang et al. (2021), we develop a theoretical framework where the government sets the level of entry restrictions considering the health cost of potential influx of infected individuals and the economic cost of reduced immigrant workforce (Jang et al. 2021). We then conduct an empirical analysis to test whether the predictions drawn from the framework held during the COVID-19 pandemic.

As a result, we reveal that the country which relies heavily on foreign labor is likely to implement loose border controls as the cost of banning entry would be too big for the economy. Moreover, the strength of entry restrictions also depends on the overall capacity of the government to deal with the infection waves. A country may want to impose stricter border control if it depends more heavily on the immigrant, and the tendency would get stronger if the country has no other means to control the disease apart from entry ban. In other words, the country which has capacity to control disease by other means, including more beds, more medical staff, more testing and tracing, and better implementation of social distancing, would be less dependent on entry restrictions, especially if the country is more dependent on immigrant labor input.

We contribute to the literature by revealing the mechanism behind the entry restrictions during the health crisis. As the international health crisis and international migration are both regarded as emerging security issues, proactive research on these issues becomes increasingly important. This paper in one of the first attempts to investigate the measures taken during infectious disease crises from both international health and migration perspectives, and to draw policy implications through close investigation on the relationship between COVID-19 entry restrictions and immigration.
2. Theoretical Framework

We begin by setting up a theoretical framework. Consider a country that has to decide on the number of immigrants (I) within its border. A fixed fraction $\beta \in (0,1)$ of the immigrants are infected. β reflects the prevalence of the disease. This in turn determines the number of infected natives (V) as $V = f(\beta I)$ for some increasing function f. Infected persons do not work, but all uninfected persons supply labor inelastically. The country’s production technology is summarized by the following CES function, as in the related studies (Angrist and Kugler 2003):

$$Y = \left[\alpha (I - \beta I)^\rho + (1 - \alpha)(N - V)^\rho \right]^{\frac{1}{\rho}}, \quad (1)$$

where Y is its economic output and N is the number of natives. The share parameter α reflects the immigrant intensity in production. $1/(1 - \rho)$ is the elasticity of substitution between immigrant labor input and native labor input, with $\rho < 1$. The country’s objective is to maximize its economic output. Increasing immigrants increases immigrant labor input; but it increases the number of infected natives, thereby reducing native labor input.

To derive a closed-form solution, let $f(\beta I) = \gamma \beta I$ for some $\gamma > 0$. γ is the number of natives infected by an infected immigrant. This inversely reflects the country’s ability to contain the spread of the disease within its borders. Given the number of natives, we can write the country’s objective as a function of the number of immigrants:

$$U(I) = \left[\alpha (I - \beta I)^\rho + (1 - \alpha)(N - \gamma \beta I)^\rho \right]^{\frac{1}{\rho}}. \quad (2)$$

From the first-order condition, we have

$$I^* = \frac{N}{\beta \gamma + (1 - \beta) \rho (\rho, \alpha, \beta, \gamma)} \quad (3)$$

4 A more natural objective function of a country would be directly (and negatively) affected by the number of infected residents. We choose the above specification for tractability.
where

\[\phi(\rho, \alpha, \beta, \gamma) := \left[\frac{(1-\alpha)\beta\gamma}{\alpha(1-\beta)} \right]^{\frac{1}{1-\rho}} \]

(4)

is the channel by which \(\alpha \) and \(\rho \) affect \(I^* \). We derive testable predictions from comparative statics on \(I^* \).

Notice first that \(I^* \) is decreasing in \(\gamma \). This is obvious, because \(\gamma \) is the number of natives infected by an infected immigrant, which inversely reflects the country’s capacity to curb the spread of the disease within its border. Also,

\[\partial \phi(\rho, \alpha, \beta, \gamma) / \partial \alpha = -\frac{1}{\alpha^2(1-\rho)} \left(\frac{1-\alpha}{\alpha} \right)^{\frac{\rho}{1-\rho}} \left(\frac{\beta\gamma}{(1-\beta)} \right)^{\frac{1}{1-\rho}} < 0, \]

(5)

and so

\[\frac{\partial I^*}{\partial \alpha} = -\frac{N(1-\beta)}{[\beta\gamma + (1-\beta)\phi(\rho, \alpha, \beta, \gamma)]^2} \frac{\partial \phi}{\partial \alpha} > 0. \]

(6)

This is also obvious, because \(\alpha \) reflects the immigrant intensity in production.

Prediction 1. The strictness of a country’s border control decreases with (i) its ability to contain the spread of the disease within its border and (ii) its immigrant intensity in production.

\(I^* \)’s relation with \(\rho \), the substitution parameter between immigrants and natives, is less obvious. \(\phi \) is the channel by which \(\rho \) affects \(I^* \), and \(I^* \) is decreasing in \(\phi \). Note that

\[\frac{\partial \phi(\rho, \alpha, \beta, \gamma)}{\partial \rho} = \left(\frac{1}{1-\rho} \right)^2 \left[\frac{(1-\alpha)\beta\gamma}{\alpha(1-\beta)} \right]^{\frac{1}{1-\rho}} \log \left[\frac{(1-\alpha)\beta\gamma}{\alpha(1-\beta)} \right]. \]

(7)

The sign of \(\partial \phi(\rho, \alpha, \beta, \gamma) / \partial Q \) is thus equal to the sign of \((1-\alpha)\beta\gamma - \alpha(1-\beta) \). \(\beta\gamma \) is the marginal decrease of native labor input when the size of immigrants increases, and \(1-\beta \) is the marginal increase of immigrant labor input when the size of the immigrants increases. First, suppose \((1-\alpha)\beta\gamma > \alpha(1-\beta) \), i.e., \(\gamma > (\alpha/(1-\alpha))(1/\beta - 1) \). This implies that an increase of immigrants reduces the weighted labor input of natives more than it
increases the weighted labor input of immigrants. Thus, there is a net loss in the weighted sum of labor input when increasing the size of immigrants. In this case, \(\partial \phi(\rho, \alpha, \beta, \gamma) / \partial \rho > 0 \), and since \(I^* \) is decreasing in \(\phi \), it is decreasing in \(\rho \). Recall that \(\gamma \) inversely reflects the country’s capacity to curb the spread of the disease within its border, and \(1/(1-\rho) \) is the elasticity of substitution between immigrant labor input and native labor input. If the country does not have sufficient capacity to curb the spread of the disease within its border, or the share of infected persons among immigrants is high, in the sense that \(\gamma > (\alpha/(1-\alpha))(1/\beta - 1) \), the country’s optimal size of immigrants is decreasing in the elasticity of substitution between immigrant labor input and native labor input.

Next, suppose \((1 - \alpha)\beta \gamma < \alpha (1 - \beta) \), i.e., \(\gamma < \left(\frac{\alpha}{1-\alpha} \right) \left(\frac{1}{\beta} - 1 \right) \). This implies that an increase of immigrants increases the weighted immigrant labor input more than it reduces the weighted native labor input, resulting in a net gain of the weighted sum of labor input. In this case, \(\partial \phi(\rho, \alpha, \beta, \gamma) / \partial \rho < 0 \), and since \(I^* \) is decreasing in \(\phi \), it is increasing in \(\rho \). If the disease is not spread easily or the share of infected persons among immigrants is low, in the sense that \(\gamma < \left(\frac{\alpha}{1-\alpha} \right) \left(\frac{1}{\beta} - 1 \right) \), the country’s optimal size of immigrants is increasing in the elasticity of substitution between immigrant labor input and native labor input. Ceteris paribus, if an influx of

Figure 1. Graphic illustration of Prediction 2

Source: Author’s own elaboration.
immigrants increases the weighted immigrant labor input more than it reduces the weighted native labor input, a country that can easily substitute immigrant labor with native labor (i.e., higher ρ), finds a larger size of immigrants optimal. Figure 1 summarizes the above discussion graphically.

Prediction 2. If the country’s capacity to curb the spread of the disease within its border is insufficient (sufficient, respectively) or the share of infected persons among immigrants is high (low, respectively), a country that can easily substitute immigrant labor with native labor will adopt stricter (less strict, respectively) border control measures.
3. Data and Methods

To simplify the discussion, we test the predictions derived in the previous section by conducting reduced form cross-sectional analyses. Instead of matching the parameters of the previous equations with the variables in the regression analyses, we attempt to test the core predictions with respect to the reliance on foreign labor force and border controls using available data for about 180 countries. The analytical methodology of this paper is summarized in the following equation:

\[TravelControls_i = a_1 + a_2 DeathPerMil_i + a_3 ShareForeign_i + a_4 (IncomeGroup_i \times ShareForeign_i) + X'\beta + \varphi_c + \varepsilon_i \]

(6)

where \(TravelControls_i \) is a measure of the intensity of travel restrictions in the country \(i \) during the early period of the COVID-19 pandemic, \(DeathPerMil_i \) is the number of COVID-19 deaths, \(ShareForeign_i \) is the share of the foreign population living in the country, \(IncomeGroup_i \) is the World Bank income group where the country belongs to, and \(X \) is a set of control variables. \(\varphi_c \) is the continent fixed effect and \(\varepsilon_i \) is an error term.

The dependent variable, \(TravelControls_i \), is measured by the University of Oxford Team in their Covid-19 Government Response Tracker series (Hale et al. 2021). The intensity of entry restrictions (C8 of OxCGRT) is measured on a scale of 0 to 4, where 0 is no action, 1 is screening of arrivals, 2 is quarantine of arrivals from certain areas, 3 is a ban on entry from certain areas, and 4 is a complete border closure. We use the average of the intensity of entry restrictions in March 2020, when most of the countries began implementing some form of travel restrictions. As the dependent variable is categorical and ordinal variable, we use ordered logistic regression instead of OLS (Greene and Hensher 2010).

We predict that the level of border control would increase as the probability of infections spreading increases. If the country is already experiencing the spread of COVID-19, the likelihood of imposing stricter border controls will increase. We measure the size of infectious waves using the number of deaths caused by COVID-19 (\(DeathPerMil_i \)) collected by WHO, as the death statistics are often more accurate than number of confirmed cases. In many developing countries, lack of
testing capacity significantly underestimates the number of COVID-19 cases (Tovani-Palone et al. 2022). a_2 is expected to be positive in our analysis.

The independent variable of main interest is $ShareForeign_i$, which is included in the specification as a proxy for immigrant labor. Data on the share of foreign-born population share is taken from the International Migrant Stock 2020, published by the Population Division of the United Nations Department of Economic and Social Affairs(UNDESA 2020). For the purposes of this study, it would be ideal to use the share of foreigners in the labor market rather than the share of foreigners in the whole population. However, as this data is only available for a few countries in the sample, we use the share of foreigners in the population as a proxy variable. To avoid potential reverse causation, we used the share of immigrants in 2019, just before the pandemic hit the world. The sign of a_3 is difficult to determine ex ante. If the share of foreign population is high, this means that the country relies more on foreign workforce, making the cost of entry restrictions high. On the other hand, more frequent exchange of people across borders may mean that the country is vulnerable to the arrival of infected individuals, increasing the need for stricter border controls in the face of pandemic outbreaks.

To disentangle this confounding effect of foreign share, we include the interaction terms between income group of the country and foreign share. We assume that the higher income countries tend to be better able to deal with the spread of infection. If the country has alternative methods to control the disease, it is likely that the country imposes less strict entry restrictions especially if it relies heavily on immigrant workforce. On the other hand, the relationship between the dependence on foreign labor and the level of border controls may not be observed in low-income countries, where the need for entry restrictions is greater than high income countries. In this case, a_4 for high-income countries is expected to be negative with respect to low-income country.

X includes variables that may affect the intensity of immigration controls in addition to the foreign-born population share and the size of the epidemic. Country-level controls include population density, national income, median age, share of population over 65, and life expectancy. Since not many of these variables turned out to be significant, we will selectively include them in the specifications. All of the

5 UNDESA (2020), Table 3, International migrant stock as a percentage of the total population by sex and by region, country or area of destination, 1990-2020.
control variables were obtained in coronavirus-data-explore from Our World in Data.6 Continent fixed effect (ϕ_c) was also considered in several specifications, to capture continent-specific characteristics that cannot be captured by the above-mentioned control variables. The summary statistics of main variables are presented in Table 1.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Observations</th>
<th>Mean</th>
<th>Standard Deviation</th>
<th>Min.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intensity of entry restrictions: C8</td>
<td>179</td>
<td>3.5</td>
<td>0.8</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Share of foreign population 2019</td>
<td>180</td>
<td>0.11</td>
<td>0.16</td>
<td>0.0</td>
<td>0.88</td>
</tr>
<tr>
<td>Net migration per thousand population, 2015–20</td>
<td>180</td>
<td>-0.1</td>
<td>5.3</td>
<td>-24.1</td>
<td>31.1</td>
</tr>
<tr>
<td>COVID–19 cases per million population, q1 2020</td>
<td>180</td>
<td>1609.9</td>
<td>3486.8</td>
<td>0</td>
<td>33080.5</td>
</tr>
<tr>
<td>COVID–19 deaths per million population, 1q 2020</td>
<td>180</td>
<td>60.5</td>
<td>143.4</td>
<td>0</td>
<td>1145.2</td>
</tr>
<tr>
<td>Population density (persons/km2)</td>
<td>178</td>
<td>463.1</td>
<td>2237.6</td>
<td>0.1</td>
<td>20546.8</td>
</tr>
<tr>
<td>GDP per capita (PPP, constant 2011 int’l $), 2019</td>
<td>172</td>
<td>19755.5</td>
<td>21245.4</td>
<td>661.2</td>
<td>116935.6</td>
</tr>
<tr>
<td>Median age</td>
<td>172</td>
<td>30.3</td>
<td>9.2</td>
<td>15.1</td>
<td>48.2</td>
</tr>
<tr>
<td>Share of aged 65 and above</td>
<td>171</td>
<td>0.09</td>
<td>0.06</td>
<td>0.01</td>
<td>0.27</td>
</tr>
<tr>
<td>Life expectancy</td>
<td>180</td>
<td>73.0</td>
<td>7.7</td>
<td>53.3</td>
<td>86.8</td>
</tr>
</tbody>
</table>

6 For definition and source, see here: https://github.com/owid/covid-19-data/tree/master/public/data.
4. Results

We first report the baseline results of the ordered logistic regression without interaction terms in Table 2. It is clear that the size of the epidemic, as measured by Covid-19 deaths predicts the high probability of strict entry restrictions at the 1% significant level (Table 2, column (1)). This is also the case when controlling for the continent fixed effect in column (2) of Table 2. The coefficient on the share of foreign population, as predicted, is insignificant. A larger share of foreign population means higher probability of infection spread through the medium of foreign incomers, but it also posits higher socio-economic costs of border controls. It is interesting to note that the results show opposite signs when we did the same analyses on two different samples. The coefficient of $ShareForeign_i$ in the European sample is negative and significant, which implies that the government wants to impose looser border controls if it relies more on foreigners, while that in African sample is positive and significant. This is indirect evidence that the governments respond differently depending on their ability to control disease using measures other than border controls.

<table>
<thead>
<tr>
<th>Table 2. Ordered logistic regression results: without interaction terms</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Whole sample</td>
</tr>
<tr>
<td>DeathPerMil_i</td>
</tr>
<tr>
<td>(0.001)</td>
</tr>
<tr>
<td>ShareForeign_i</td>
</tr>
<tr>
<td>(2.157)</td>
</tr>
<tr>
<td>Continent FE</td>
</tr>
<tr>
<td>Observations</td>
</tr>
</tbody>
</table>

Notes: Dependent variable is the level of border controls (C8) in March 2020; Standard errors are in parentheses; * p<0.10, ** p<0.05, *** p<0.01.

The negative relationship between the level of border control and the share of foreign population is most evident in European sample, as Figure 2 shows. For example, Luxembourg, where the share of foreign population is almost 50%, did no impose any border control at all in March 2020. On the other hand, many Central
and Eastern European countries, including Romania, Czech Republic, and Romania had relatively small immigrant populations and imposed stricter border controls. However, this relationship may not be visible in low-income countries and this needs to be tested using interaction terms.

![Figure 2. Correlation between Share of Foreign Population and Strictness of Travel Restrictions, Europe](image)

Notes: 42 European countries are included in the graph.

Table 3 reports the results with interaction terms. The coefficient on deaths per million population is still positive and significant in Column (1) of Table 3, while the coefficient on the share of foreign population turns positive and significant when including interaction terms. With reference to low-income country, more interestingly, interaction terms between higher income group and share of foreign population show negative coefficient. For example, high-income countries tend to lower the level of entry restrictions when the share of foreign population is larger compared to low-income countries. This is in line with our prediction in Section 2,
which implies that high income countries are likely to impose loose border controls when the dependence on foreign workforce increases the cost of policy measures. Low-income countries, facing the same cost, have no choice but introduce stricter entry restrictions. This does not mean that the low-income countries tend to impose stricter border controls in general, as the coefficients on the income group dummies are positive with respect to low-income countries. This is because of the relationship between the foreign share and immigration controls, rather than the level of immigration controls themselves. The results remain the same when controlling for continent fixed effects and other control variables, such as population, GDP per capita, and median age is controlled in columns (2) and (3) of Table 3.

Table 3. Ordered logistic regression results: with interaction terms

<table>
<thead>
<tr>
<th></th>
<th>(1) Whole sample</th>
<th>(2) Whole sample</th>
<th>(3) Whole sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>DeathPerMil</td>
<td>0.007***</td>
<td>0.009***</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>(0.001)</td>
<td>(0.001)</td>
<td>(0.003)</td>
</tr>
<tr>
<td>ShareForeign</td>
<td>13.807***</td>
<td>15.929**</td>
<td>17.336**</td>
</tr>
<tr>
<td></td>
<td>(5.244)</td>
<td>(7.916)</td>
<td>(7.933)</td>
</tr>
<tr>
<td>LIC × ShareForeign</td>
<td>reference</td>
<td>reference</td>
<td>reference</td>
</tr>
<tr>
<td></td>
<td>(2.724)</td>
<td>(6.128)</td>
<td>(7.013)</td>
</tr>
<tr>
<td>UMIC × ShareForeign</td>
<td>-7.523</td>
<td>-11.648</td>
<td>-12.734</td>
</tr>
<tr>
<td></td>
<td>(6.244)</td>
<td>(10.750)</td>
<td>(10.744)</td>
</tr>
<tr>
<td>HIC × ShareForeign</td>
<td>-12.648*</td>
<td>-16.696*</td>
<td>-17.786**</td>
</tr>
<tr>
<td></td>
<td>(6.713)</td>
<td>(9.022)</td>
<td>(8.431)</td>
</tr>
<tr>
<td>LIC</td>
<td>reference</td>
<td>reference</td>
<td>reference</td>
</tr>
<tr>
<td>LMIC</td>
<td>1.595***</td>
<td>1.257***</td>
<td>1.059***</td>
</tr>
<tr>
<td></td>
<td>(0.184)</td>
<td>(0.307)</td>
<td>(0.247)</td>
</tr>
<tr>
<td>UMIC</td>
<td>1.553***</td>
<td>1.976***</td>
<td>1.330**</td>
</tr>
<tr>
<td></td>
<td>(0.360)</td>
<td>(0.220)</td>
<td>(0.648)</td>
</tr>
<tr>
<td>HIC</td>
<td>1.509**</td>
<td>2.001**</td>
<td>1.012</td>
</tr>
<tr>
<td></td>
<td>(0.614)</td>
<td>(0.779)</td>
<td>(0.725)</td>
</tr>
<tr>
<td>Control variables</td>
<td>X</td>
<td>X</td>
<td>O</td>
</tr>
<tr>
<td>Continent variables</td>
<td>X</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>Observations</td>
<td>179</td>
<td>179</td>
<td>168</td>
</tr>
</tbody>
</table>

Notes: Dependent variable is the level of border controls (C8) in March 2020; Standard errors are in parentheses; the baseline for interaction terms is LIC: low-income countries; HIC: high-income countries, HMIC: high-and middle-income countries, LMIC: low- and middle-income countries; * p<0.10. ** p<0.05. *** p<0.010.
As an additional analysis, we run ordered logistic regressions using net migration as an explanatory variable instead of the foreign-born share. The impact of entry restrictions is likely to be greater for recent migrants, who are more likely to be currently travelling or having family members visit. Therefore, instead of using the foreign share, which is a stock variable, we use net migration as a flow variable to determine the impact of foreign labor inflows on policy responses. We use the “net migration” item from the World Population Prospects 2019 (UNDESA 2019). Net migration is the number of people entering a country in a given period minus the number of people leaving, usually calculated by subtracting natural increase, the

| Table 4. Ordered logistic regression results: with net migration per 1000 population |
|--|-----------------|-----------------|-----------------|
| | Whole sample | Whole sample | Whole sample |
| **DeathPerMil**_i | | | |
| | 0.006*** | 0.009*** | 0.001 |
| | (0.001) | (0.001) | (0.004) |
| **Netmigration**_i | | | |
| | -0.056*** | -0.049 | -0.054 |
| | (0.007) | (0.038) | (0.041) |
| **LMIC × Netmigration**_i | | | |
| | 1.389*** | 1.204*** | 0.865*** |
| | (0.222) | (0.198) | (0.305) |
| **UMIC × Netmigration**_i | | | |
| | 1.708*** | 2.023*** | 1.332** |
| | (0.534) | (0.247) | (0.621) |
| **HIC × Netmigration**_i | | | |
| | 1.518*** | 1.693*** | 0.807 |
| | (0.442) | (0.267) | (0.887) |
| **LIC** | | | |
| **LMIC** | 0.042 | 0.062 | 0.055 |
| | (0.118) | (0.068) | (0.084) |
| **UMIC** | -0.010 | 0.027 | 0.030 |
| | (0.031) | (0.100) | (0.094) |
| **HIC** | 0.095** | 0.033 | 0.014 |
| | (0.043) | (0.049) | (0.054) |
| **Control variables** | X | X | 0 |
| **Continent variables** | X | 0 | 0 |
| **Observations** | 179 | 179 | 168 |

Notes: Dependent variable is the level of border controls (C8) in March 2020. Standard errors are in parentheses; the baseline for interaction terms is LIC: low-income countries; HIC: high-income countries, HMIC: high-and middle-income countries, LMIC: low- and middle-income countries; * p<0.10. ** p<0.05. *** p<0.010.
difference between births and deaths, from population growth for a given period. We use the net migration measured between January, 2015 and January, 2020.

The results in Table 4 report a totally different picture. The sign of the net migration variable is now negative, implying that the countries that received more migration in the last 5 years imposed less strict border controls during the pandemic, controlling for income. However, the significance disappears when the continent fixed effect and other control variables are included, which may mean that the robustness is not guaranteed. However, the sign remains positive. More puzzling are the results as to interaction terms. Economically advanced countries tend to impose stricter international travel restrictions when they have recently received more immigrants. This result may indicate that the effect of the existing immigrant community and that of the influx of immigrants have different effects on border control decisions. That is, the costs of border controls are taken more seriously when the country has a larger immigrant population, while the benefits of border controls exceed their costs when the country has received more immigrants. However, these implications still require further investigation.
5. Policy Implications

The COVID-19 pandemic and its response have not only disrupted global migration patterns but also exacerbated the challenges faced by migrants. Countries highly reliant on foreign labor encountered difficulties in labor supply due to immigration restrictions and border closures. Our empirical analyses found that many governments sought to alleviate the costs associated with these restrictions by adjusting the intensity of them, but it was also true that these adjustments affected the government’s ability to prevent epidemics. While it is natural that the socio-economic factors such as foreign labor dependence influence policy decisions during health crises, it is equally important to ensure that the influx of infected individuals is effectively controlled.

In cases where the cost of implementing stricter border closures is too high, alternative measures may be used to mitigate the impact of the COVID-19 pandemic. The use of widely recognized social distancing measures, including group size limits, event bans, telecommuting, and school closures, may be a viable option. Another approach, often referred to as the 3T strategy—comprising testing, tracing/quarantine, and treatment—provides a cost-effective means of controlling the outbreak. The advent of vaccination further enhances epidemic control and presents mass vaccination as a strategic option to alleviate the global vaccine supply imbalance, as highlighted by Jang et al. 2021.

Effective immigration control at borders is crucial to limiting the impact of virus variants introduced through international travel. Since extreme forms of border closure cause significant suffering, more targeted and effective policy interventions are needed. Since January 2020, the South Korean government has implemented a special entry procedure for travelers from high-risk areas. These procedures aim to detect infectious diseases early and prevent their spread in the community through enhanced screening and quarantine measures.

Individuals subject to the special entry procedure receive advance notice of departure and are required to complete a special quarantine declaration form on board the aircraft. Upon arrival, symptomatic individuals undergo COVID-19 testing at an airport quarantine center, while asymptomatic arrivals are tested at a local health center near their residence. Positive cases are transferred to designated treatment facilities, while those testing negative are required to observe a 14-day self-
isolation period. Vaccinated individuals are recently exempted from quarantine after testing negative, while unvaccinated individuals must remain in quarantine. Management of quarantine procedures is streamlined through the use of smartphone apps, facilitating efficient monitoring.

Arriving individuals are required to install a “self-testing app” on their smartphones and report daily self-test results for 14 days post-arrival. By inputting symptoms into the self-testing app, travelers can promptly determine their infection status, effectively thwarting community transmission. Non-compliance triggers follow-up calls from designated officials. If symptoms develop during the monitoring period, individuals are directed to a public health center for evaluation. Asymptomatic individuals undergo a second COVID-19 test after 14 days, and quarantine restrictions are lifted upon receipt of negative results.

These comprehensive measures for incoming travelers provide a reliable epidemic management framework without the need for severe border closures. Although the 14-day quarantine is costly, it is a preferable alternative to complete border closures, particularly for individuals entering the country for labor, family reunification, or education. As these strategies require financial and administrative resources, which are not often lacking in the low- and middle-income countries, the development cooperation efforts should focus on the border controls.

In addition, a number of policies can be implemented to facilitate migration and mitigate the impact of the pandemic on migrants. For example, EU and OECD member states made residence permit and entry procedures online, ensuring migration continuity in the event of in-person service shutdowns. Postal, electronic means, and online systems were deployed to maintain services during agency closures, with some member states continuing to leverage existing online platforms. Australia, for instance, restricted in-person services to submissions via a smartphone application, conducting virtual naturalization ceremonies in 2020. Measures were taken to safeguard migrants from travel disruptions or limitations on immigration services, including automatic extensions of residence permits, tolerated overstays, waivers of departure requirements, suspended procedures, and extended deadlines in EU member states and Norway. The United States introduced online applications for stay extensions in March 2020.

In addition to supporting migrants, countries implemented measures to address labor market needs. EU Member States adopted measures to facilitate access to the labor market for third-country nationals to address shortages resulting from seasonal work stoppages. Some countries used tools such as quotas, as outlined in their 2021 contingency plans, to meet the demand for seasonal workers. Most countries planned to boost economic recovery by increasing labor migration post-COVID-19.

International students, facing similar travel restrictions and testing/quarantine requirements as other foreign nationals, experienced a substantial decline in new admissions in 2020. To assist them, immigration authorities in several countries issued visas or residency permits online and accommodated or extended deadlines for document submissions. Policies were enacted to limit face-to-face classes on campus, with exceptions for essential activities. Canada, the United Kingdom, and some EU member states provided government-funded social security or other support for international students without financial benefits such as scholarships or grants.
6. Conclusion

In this paper, we investigate the relationship between COVID-19 entry restrictions and dependence on immigrants. In response to the global COVID-19 pandemic, nations worldwide implemented international travel restrictions to reduce the entry of infected individuals. These measures encompassed entry and exit bans, mandatory quarantine for travelers, and vaccination requirements, significantly altering global mobility patterns. Despite their proven efficacy, entry restrictions also have substantial economic costs, particularly evident in the form of reduced immigration and subsequent labor shortages in sectors reliant on immigrant workforce. We present a theoretical framework to shed light on the factors influencing the adoption of entry restrictions, encompassing both health and economic considerations. Empirical evidence suggests that countries heavily dependent on foreign labor tend to adopt less stringent border controls to compensate for the economic costs associated with reduced immigrant workforce. Moreover, we argue that the strength of entry restrictions is determined by a government’s capacity to manage infection waves through means other than entry bans. Finally, we offer policy implications based on our research, on how to control the spread of infectious diseases while minimizing the cost imposed by the reduction in immigration and the cost imposed to the immigrants themselves.

While the results presented in this paper make clear contributions to the literature, this paper is not without limitations. The theoretical framework can be enhanced by better considering the substitute and complementary relationship between native and immigrant workers, and by internalizing the infection transmission mechanism. It is also debatable whether the income level is the best proxy for a country’s medical capacity, and the share of foreign population is the best proxy for a country’s reliance on immigrant labor. In addition, the empirical analysis can be extended to the second and third waves of the COVID-19 pandemic to check if the similar patterns of relationship between immigration and entry restrictions are observed in the later stage. Obviously, this study raises as many questions as it answers, but these questions will be left for future research.
The Relationship between COVID-19 Entry Restrictions and Immigration

References

본 논문에서는 코로나19 임국 제한조치와 이민자에 대한 의존도 사이 상관관계를 이론적 틀과 실증분석을 통해 고찰하였다. 코로나19 팬데믹 기간, 전 세계 대부분의 국가들은 감염원 유입 차단을 목적으로 해외여행 제한조치를 시행했다. 입국 제한의 입증된 효과에도 불구하고 해당 조치는 상당한 경제적 비용을 초래했는데, 특히 이민자 감소와 함께 그에 따른 이민자 인력에 의존하는 부문의 인력 부족이 두드러졌다. 각 국가들은 임국 제한정책의 보건상 이익과 경제적 피해를 동시에 고려하여 의사결정을 하였으며, 이는 본 논문이 구축한 이론적 틀에 잘 나타난다. 가용한 자료를 활용하여 수행한 실증분석 결과, 외국인 노동력에 크게 의존하는 국가는 이민자 노동력 감소에 따른 경제적 비용을 줄이기 위해 '덜 엄격한 국경 통제'를 채택하는 경향을 보였다. 입국 제한의 강도는 입국 금지 이외의 수단을 통해 감염병 유행을 관리할 수 있는 정부의 역량에 따라 달라졌다. 마지막으로 본 논문에서는 이민자 감소로 인한 비용과 이민자 개인에게 부과되는 비용을 최소화하면서 감염병 확산을 통제할 수 있는 방안에 대한 정책적 시사점을 제시하였다.
장영욱
연세대학교 경제학 학사
런던정경대 경제학 석사 및 박사
대외경제정책연구원 세계지역연구1센터 북미유럽팀 부연구위원
(現, E-mail: yojang@kiep.go.kr)
저서 및 논문
이주와 노동시장에 미치는 영향 연구. (공저, 2022)
EU의 중장기 통상전략과 한-EU 협력 방안. (공저, 2022)

조동희
Toulouse School of Economics 경제학 박사
대외경제정책연구원 세계지역연구센터 유럽팀장(前)
전북대학교 경제학과 교수
(現, E-mail: dongheejoe@gmail.com)
저서 및 논문
EU의 중장기 통상전략과 한-EU 협력 방안. (공저, 2022)
미국의 공급망 재편 정책에 대한 기업의 대응 및 시사점. (공저, 2023)
<table>
<thead>
<tr>
<th>Year</th>
<th>No.</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>2023</td>
<td>23-01</td>
<td>An Analysis on the Regional Integration of Northeast Asia by Developing NARCI (Northeast Asia Regional Cooperation Index)</td>
<td>Jiyoung Moon, Jehoon Park, and Sung-Hoon Park</td>
</tr>
<tr>
<td></td>
<td>23-03</td>
<td>Industrial Policy, Rise of Skilled Labor, and Firm Growth in the Early Stage of Economic Development</td>
<td>Sunghun Cho and Jaehyung Kim</td>
</tr>
<tr>
<td></td>
<td>23-04</td>
<td>The Relationship between COVID–19 Entry Restrictions and Immigration</td>
<td>Youngook Jang and Donghee Joe</td>
</tr>
<tr>
<td></td>
<td>23-05</td>
<td>Individualism and Political Stability</td>
<td>Minhyeon Jeong and Wongi Kim</td>
</tr>
<tr>
<td>2022</td>
<td>22-01</td>
<td>COVID–19 and the Health of Banking Sector in Japan and South Korea: A Comparative Study</td>
<td>Munim Kumar Barai</td>
</tr>
<tr>
<td>2021</td>
<td>21-01</td>
<td>Consumer Responses to Price Shocks of Wine Imports in Korea</td>
<td>Chul Chung, Min-chirl Chung, and Bonggeun Kim</td>
</tr>
<tr>
<td></td>
<td>21-02</td>
<td>A Theoretical Approach to Evaluating Global Vaccination Plans</td>
<td>Youngseok Park and Sangjun Yea</td>
</tr>
<tr>
<td>2020</td>
<td>20-01</td>
<td>Trump Tariff and Firm Relief: Winners and Losers from Steel Tariff Exclusion Request</td>
<td>Yeo Joon Yoon and Wongi Kim</td>
</tr>
<tr>
<td></td>
<td>20-02</td>
<td>Global Financial Imbalance: Firm–level Evidence from Korea</td>
<td>Tae Soo Kang, Kyunghun Kim, and Yuri Kim</td>
</tr>
<tr>
<td></td>
<td>20-03</td>
<td>Defined Contribution Funded Social Security and Labor Supply: Focus on Mexican Social Security Reform in 1997</td>
<td>Sungwoo Hong</td>
</tr>
<tr>
<td></td>
<td>Title</td>
<td>Authors</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>20–04</td>
<td>Bargaining and War: On the Existence of Communication Equilibrium in Conflict Games</td>
<td>Youngseok Park and Colin Campbell</td>
<td></td>
</tr>
<tr>
<td>20–05</td>
<td>Determinants of Korean Outward Foreign Direct Investment: How do Korean firms respond to the labor costs of host countries?</td>
<td>Hanbyul Ryu and Young Sik Jeong</td>
<td></td>
</tr>
<tr>
<td>19–02</td>
<td>Deeper Regional Integration and Global Value Chains</td>
<td>Nakgyoon Choi</td>
<td></td>
</tr>
<tr>
<td>19–03</td>
<td>Repercussions of Negatively Selective Migration for the Behavior of Non–migrants when Preferences are Social</td>
<td>Oded Stark and Wiktor Budzinski</td>
<td></td>
</tr>
<tr>
<td>19–04</td>
<td>The Effect of Export Insurance and Guarantees on Export Performance: An Empirical Analysis for Korea</td>
<td>Kyunghun Kim and Hyelin Choi</td>
<td></td>
</tr>
<tr>
<td>19–05</td>
<td>New Delhi’s ‘Act East’ and the India–ASEAN Engagement: What They Mean for India–Korea Relations in the Indo–Pacific</td>
<td>Jagannath P. Panda</td>
<td></td>
</tr>
<tr>
<td>19–06</td>
<td>Institutional Quality, Trade Costs and Comparative Advantage</td>
<td>Sangkyom Kim and Soon Chan Park</td>
<td></td>
</tr>
<tr>
<td>19–07</td>
<td>Stakeholders’ Interest Relations in Korea’s Services Trade Liberalization: A Political Economy Analysis</td>
<td>June Dong Kim</td>
<td></td>
</tr>
<tr>
<td>19–08</td>
<td>The Effects of Technological Similarity and Diversity on Merger and Innovation</td>
<td>Gu Sang Kang</td>
<td></td>
</tr>
<tr>
<td>19–09</td>
<td>The Effects of US Sectoral Shocks through the World Input–Output Network</td>
<td>Minsoo Han</td>
<td></td>
</tr>
<tr>
<td>19–10</td>
<td>How Does Protectionist Trade Policy Interact with FDI?</td>
<td>Jongduk Kim and Moonhee Cho</td>
<td></td>
</tr>
</tbody>
</table>
Founded in 1989, the Korea Institute for International Economic Policy (KIEP) is a government-funded research institute established to conduct studies, research and analyses of global economic issues that impact the Korean economy, and to help guide the nation toward effective international economic policies.

KIEP is responding to recent developments in the global economy, conducting a wide range of research projects that will offer significant implications for the government’s New Northern and New Southern policies, a new trade policy regime that aims to support inclusive growth, and international macro-financial initiatives in line with the unfolding 4th Industrial Revolution.

We are committed to introducing policies that can elevate the nation’s capacities for innovative growth, and to promote international discourse on issues that impact the global community, as we ensure that KIEP remains an influential global think tank that leads the formulation of international economic policies.

Since its founding, KIEP has conducted insightful studies on newly emerging economies and global regions, and has dedicated itself to the development of trade negotiations and national agendas.

KIEP will continue its policy research on global and regional economies, trade investment and international macro-finance, with the aim of contributing to sustainable growth as a responsible research institute, and establishing itself as a nationally reliable institute through the dedicated efforts of all KIEP members.

Call for Papers for the East Asian Economic Review

With great pleasure, the East Asian Economic Review is welcoming submissions.

AIMS and SCOPE

The East Asian Economic Review is an economic journal, for the promotion of interdisciplinary research on international economics. Published as a quarterly by the Korea Institute for International Economic Policy, a Korean government-funded economic think-tank, the Journal is global in perspective and covers both theoretical and empirical research.

The Journal aims to facilitate greater understanding of all issues pertinent to diverse economies of East Asia through publication of rigorous analyses by renowned experts in the field. The EAER connects policy and theory, providing empirical analyses and practical policy suggestions for the economies in the region.

TOPICS COVERED

The East Asian Economic Review brings together articles from many different realms of economics at both regional and global levels. Themes relevant to East Asia’s diverse economy are the major focuses. Specific areas of interest include, but are not limited to:

- Trade and Investment Issues
- Economic Integration
- APEC
- ASEAN
- ASEM
- International Finance
- Liberalization of Financial Services and Capital
- International Cooperation for Korean Unification.

NOTE FOR AUTHORS

SUBMISSION GUIDELINE:
Refer to our website www.eaerweb.org and Click “Submission” menu at the top of the main page.

SUBMISSION DEADLINE:
The Journal is published every March, June, September and December of each year and submissions are accepted for review on an ongoing basis.

REVIEW PROCESS:
We have introduced a “fast-track” system, which takes four to five weeks on average from submission to the first round review in order to provide quick and authoritative decisions to the authors. In general, the Journal’s manuscript decision process includes submission, editorial decision on whether the paper should be reviewed, peer review, decision after review, revision, acceptance in principle, final submission and acceptance, proofs, advance online publication, and print publication.

For further information regarding submission, Contact EAER Editorial Office:
[38147] 3rd Floor, Building C, Sejong National Research Complex, 370 Sicheong-daero, Sejong-si, Korea
Tel: 82-44-414-1213 FAX: 82-44-414-1044
Email: eaer@kiep.go.kr
Website: www.eaerweb.org

AWARD FOR EAER

The East Asian Economic Review Award is given annually to articles that have made exemplary contributions to advance the public as well as academic understanding of international economics. Every article published in the Journal is given an honorarium of KRW 2,500,000; and annual nominations for the outstanding and noteworthy articles include KRW 5,000,000 prize and a detailed nomination statement describing how the selected papers have contributed to the knowledge of international economics.

Call for Papers for the East Asian Economic Review

With great pleasure, the East Asian Economic Review is welcoming submissions.
The Relationship between COVID-19 Entry Restrictions and Immigration

Youngook Jang and Donghee Joe

Despite the proven effectiveness of international travel restrictions imposed during the COVID-19 pandemic, they also had significant costs. Countries that are heavily dependent on foreign labor tend to adopt less stringent border controls to offset the economic costs caused by the reduction of the immigrant workforce. Moreover, the strength of entry restrictions is determined by a government’s capacity to manage waves of infection by means other than entry bans. Based on theoretical and empirical investigations, we offer policy implications on how to control the spread of infectious diseases while minimizing the costs associated with the international travel restrictions.