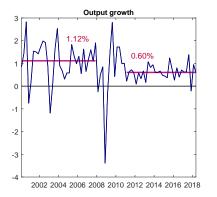
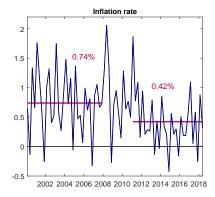
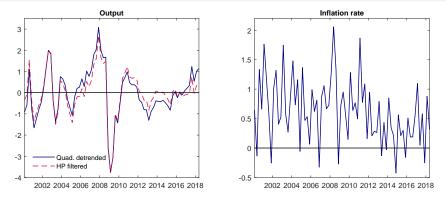
ESTIMATING THE TIME-VARYING EFFECTS OF MONETARY POLICY SHOCKS IN KOREA


Jong-Suk Han (KIPF) and Joonyoung Hur (HUFS)


Macroeconomics Research Group

April 6th, 2019


Disclaimer: The views expressed in this paper are solely the responsibility of the author and should not be interpreted as reflecting the views of the Korea Institute of Public Finance.

RECENT MACRO DYNAMICS OF KOREA

RECENT MACRO DYNAMICS OF KOREA

St.Dev.		Whole sample	2000:Q1-2007:Q4	2011:Q1-2018:Q2
Output	Quadratic detrended HP filtered	1.16 1.06	1.14 1.04	0.62 0.39
Inflation rate		0.54	0.53	0.47

MOTIVATION

- Two notable changes in the macro dynamics after the global financial crisis (GFC) of 2008-09
 - 1. both output growth and inflation are lower in level
 - 2. reduced volatility of output and inflation
- On the point 1, expansionary monetary policy (MP) is an option to counteract this phenomenon
 - e.g., "In the face of slowing growth (...) the Bank of Korea should have a clearly accommodative MP stance" from *IMF* Staff 2019 Article IV Mission to Korea
 - a prerequisite for this to be a viable policy option, however, is the efficacy of MP in boosting the economy

MOTIVATION

- Regarding 2, there is a plethora of US literature on the "Great Moderation"
 - the crux of debates is about the source of the reduced macro volatility from the mid-80s to the onset of the GFC
 - "good luck": Sims and Zha (2006, AER)
 - "good policy": Clarida et al. (2000, QJE); Lubik and Schorfheide (2004, AER)
- In spite of significance of the issue, this line of research for Korea is still in its infancy

WHAT WE DO

- Estimate a time-varying coefficient vector autoregressive (TVC-VAR) model
 - as in Primiceri (2005, RES) and Galí and Gambetti (2015, AEJ-Macro)
 - with Korean data since the 2000s
- Attempt to seek econometric evidence on:
 - how does the effect of monetary policy shocks on output (and its components) change over time?
 - what are the primary determinants of the change in the macroeconomic dynamics? Any role of monetary policy?

WHAT WE FIND (PRELIMINARY)

1. A time-varying pattern of the efficacy of MP shocks?

- the effect of MP shocks on output has decreased gradually during the 2000s
- the decreasing pattern, however, vanishes and turns out to be more stable in the 2010s
- diminished responses of both consumption and investment account for this finding
- 2. The sources of the reduced volatility?
 - the size of shocks is its dominant determinant
 - the contribution of MP is somewhat limited

Econometric Specification

REDUCED-FORM VAR SPECIFICATION

A quarterly VAR with time-varying coefficients:

$$z_t = \mu_{0,t} + \mu_1 t + \mu_2 t^2 + Dx_t + B_{1,t} z_{t-1} + \ldots + B_{\ell,t} z_{t-\ell} + u_t,$$

- $\mu_{0,t}$ is a constant, t & t^2 are linear and quadratic time trends
- x_t: vector of exogenous variables
- D: coefficients associated with the exogenous variables
- z_t: vector of endogenous variables
- $B_{i,t}$'s: matrices of time-varying coefficients
- ▶ u_t : heteroskedastic reduced-form errors with $E(u_t u'_t) = \Sigma_{u,t}$

REDUCED-FORM VAR SPECIFICATION

A quarterly VAR with time-varying coefficients:

 $z_t = \mu_{0,t} + \mu_1 t + \mu_2 t^2 + Dx_t + B_{1,t} z_{t-1} + \ldots + B_{\ell,t} z_{t-\ell} + u_t,$

- x_t contains four variables having potential impacts on monetary policy decision-making
 - the growth rate of oil price, federal funds rate, and real exchange rate (e.g., Kim (2000)) as well as US output
- z_t consists of three variables
 - the benchmark specification has output (Y), inflation rate (π), and overnight call rate (R)
 - extended 4-variable models are also considered comprising $\{Y, C, \pi, R\}$, and consumption (*C*) is replaced with investment (*I*), and *C* and *I* sub-components in order to calculate the responses of these variables to MP shocks

▶ set
$$\ell = 3 \Leftarrow$$
 based on the information criteria (AIC and BIC)

CORRESPONDING STRUCTURAL VAR

The structural VAR model:

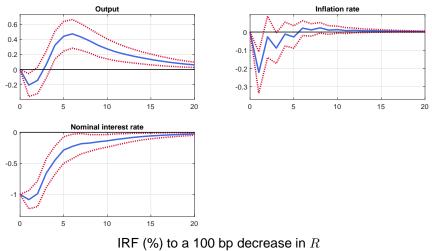
$$A_t z_t = A_t \left(\mu_{0,t} + \mu_1 t + \mu_2 t^2 + D x_t \right) + A_t B_{1,t} z_{t-1} + A_t B_{2,t} z_{t-2} + A_t B_{3,t} z_{t-3} + e_t,$$

• A_t : lower-triangular Cholesky decomposition of $\Sigma_{u,t}$

- posit that the policy rate has no contemporaneous effect on macroeconomic variables, such as production and prices
- e.g., Christiano, Eichenbaum, and Evans (1999, HoM)
- ► e_t : structural innovations with $E(e_t e'_t) = \Sigma_{e,t}$ where all the off-diagonal elements of $\Sigma_{e,t}$ are zero

•
$$A_t u_t = e_t$$
 and $A_t \Sigma_{u,t} A'_t = \Sigma_{e,t} \Sigma'_{e,t}$

DATA AND ESTIMATION

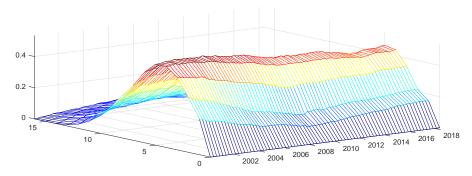

- Sample: 1990:Q1-2018:Q2
 - the 10-year sample 1990:Q1–1999:Q4 is used to initiate the prior distributions
 - the empirical results are for the period 2000:Q1-2018:Q2
- Bayesian inference as in Galí and Gambetti (2015)
 - Gibbs sampling for 22,000 posterior draws
 - with the first 20,000 used as a burn-in period and every 2nd thinned, leaving a sample size of 1,000
- For comparison, the fixed-coefficient (FC) VAR results are also provided

Definitions of the output components

- "Consumption" (C): private consumption
 - "durable consumption" (C^d) = durable + semi-durable
 - "nondurable consumption" (C^{nd}) = nondurable + service
 - $\blacktriangleright \ C \approx C^d + C^{nd}$
- "Investment" (I) = "residential" (I^r) + "nonresidential" (I^{nr})

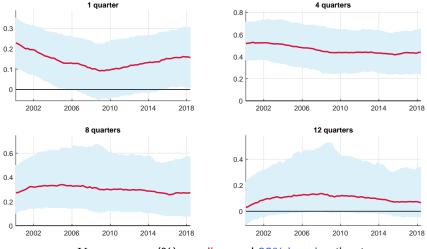
Empirical Results

IMPULSE RESPONSES: FC-VAR

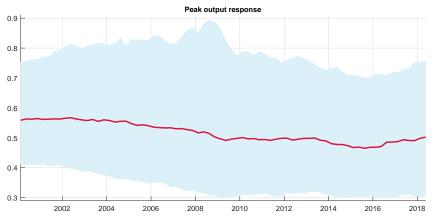


Solid: Point estimates; Dashed: 68% bands

COMPARISON TO THE US ESTIMATES


- US VAR evidence: in response to a 100 bp decrease in the FFR, a peak rise in GDP is ranged from 0.3% to 0.8%
 - Leeper-Sims-Zha (1996) ⇒ 0.35% (59-96)
 - Bernanke-Gertler-Watson (1997) \Rightarrow 0.4% (65-95)
 - Faust-Swanson-Wright (2004) ⇒ 0.6% (Futures markets for the FFR, 91-01)
 - Uhlig (2005) \Rightarrow 0.3% (sign restrictions, 65-96)
 - Gorodnichenko (2006) \Rightarrow 0.8% (factor-based VAR, 65-96)
- Our output response is in line with these estimates
 - a peak effect in output of 0.47%
- However, a price puzzle seems to be present

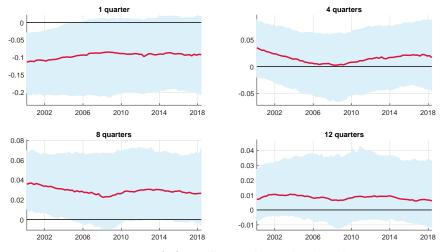
IMPULSE RESPONSES OF Y


Median output IRF estimates (%) to 100 bp decreases in R

IMPULSE RESPONSES OF \boldsymbol{Y}

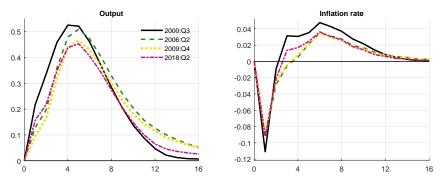
Y responses (%), median and 68% band estimates

IMPULSE RESPONSES OF \boldsymbol{Y}

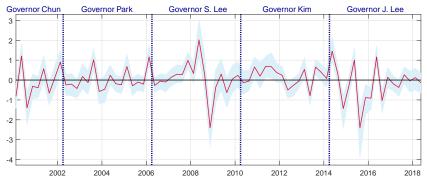

Peak Y responses (%), median and 68% band estimates

IMPULSE RESPONSES OF \boldsymbol{Y}

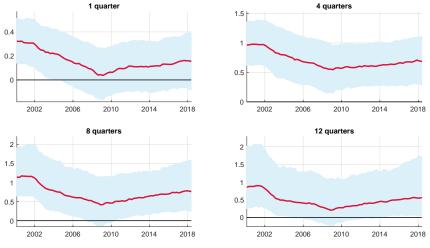
	2000:Q2	2004:Q2	2008:Q2	2012:Q2	2016:Q2	2018:Q2
1 quarter	0.22	0.15	0.10	0.12	0.15	0.16
4 quarters	0.52	0.50	0.45	0.44	0.43	0.44
8 quarters	0.27	0.33	0.32	0.30	0.26	0.27
12 quarters	0.04	0.11	0.13	0.11	0.07	0.06
Y Peak (QTR)	0.52 (4)	0.53 (5)	0.48 (5)	0.47 (5)	0.43 (5)	0.45 (5)


Summary of the Y responses to a 100 basis point decrease in R (%), median estimates

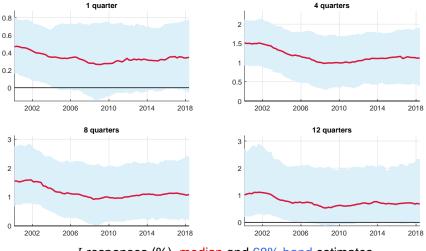
IMPULSE RESPONSES OF π


 π responses (%), median and 68% band estimates

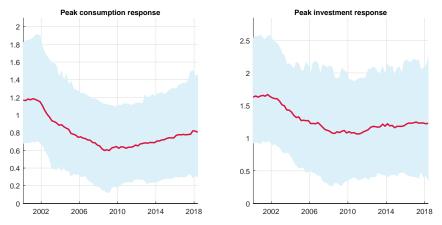
Impulse Responses of Y and π


Y and π responses for selected periods, median estimates 2000:Q3; 2006:Q2; 2009:Q4; 2018:Q2

ESTIMATED MP SHOCK SEQUENCE


Estimated sequence of monetary policy shocks $(e_{R,t})$, median and 68% band estimates

IMPULSE RESPONSES OF C


C responses (%), median and 68% band estimates

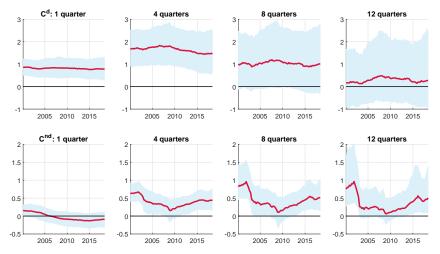
IMPULSE RESPONSES OF I

I responses (%), median and 68% band estimates

PEAK IMPULSE RESPONSES OF C and I

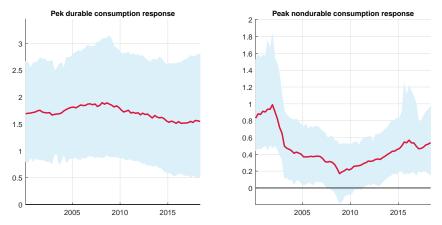
Peak C (left) and I (right) responses (%), median and 68% band estimates

PEAK IMPULSE RESPONSES OF C and I


2000:Q2	2004:Q2	2008:Q2	2012:Q2	2016:Q2	2018:Q2
C peak (QTR) 1.16 (7)	0.87 (5)	0.62 (5)	0.67 (5)	0.78 (6)	0.81 (6)
<i>I</i> peak (QTR) 1.65 (6)	1.35 (5)	1.08 (6)	1.17 (6)	1.23 (6)	1.23 (6)

Summary of the C and I peak responses to a 100 basis point decrease in R (%), median estimates

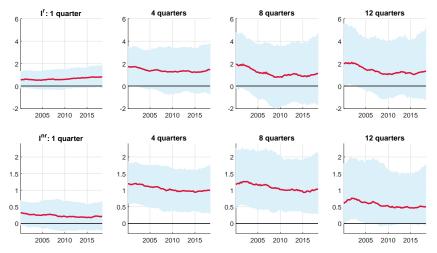
Peak Impulse Responses of ${\cal C}$ and ${\cal I}$


- For shorter horizons, a similar pattern to those of output is observed for the consumption and investment responses
 - the effects of MP shocks to C and I decrease from the early 2000s to the GFC period
 - they bounce back mildly in the subsequent sample
- The diminished effect of MP shocks to C is slightly more pronounced than that to I

IMPULSE RESPONSES OF SUB-C

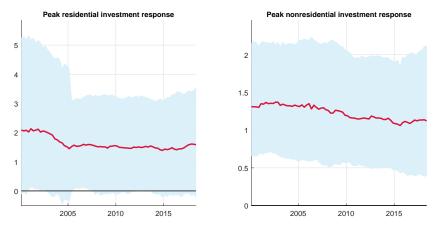
Durable (above) and nondurable (below) consumption responses (%), median and 68% band estimates

PEAK IMPULSE RESPONSES OF SUB-C



Peak C^d (left) and C^{nd} (right) responses (%), median and 68% band estimates

PEAK IMPULSE RESPONSES OF SUB-C


- A stark contrast in results
 - C^d: the effects of MP shocks declines only marginally over time
 - Cnd: they are, however, diminished considerably from the early 2000s, and are recovered only partially after the GFC
 - this finding is also observed in the peak responses
- Since the share of Cnd is substantially larger than C^d, the time-varying pattern in C is largely affected by that of Cnd

PEAK IMPULSE RESPONSES OF SUB-I

Residential (above) and nonresidential (below) investment responses (%), median and 68% band estimates

IMPULSE RESPONSES OF SUB-I

Peak I^r (left) and I^{nr} (right) responses (%), median and 68% band estimates

IMPULSE RESPONSES OF SUB-I

► For *I*, results also vary widely across its subcomponents

- ► *I^r*: the short- and longer-run effects are different
 - based on the 1-period responses, the expansionary effects of MP shocks are more pronounced over time
 - the pattern, however, becomes more L-shaped as the horizon increases
- I^{nr}: the expansionary effects of MP shocks decrease constantly over time
- These findings account for the time-varying pattern in the investment responses

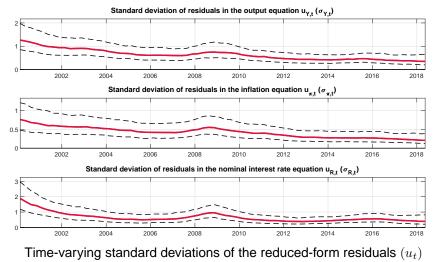
Counterfactual Exercise

COUNTERFACTUAL EXERCISES

- What are the sources of the reduced volatility in the macro aggregates of Korea?
- Two possible sources conditioning on the VAR model:
 - 1. monetary policy summarized in the B_t matrices
 - 2. size of shocks approximated by the standard deviation of u_t (σ_t) estimates
- To assess empirically the contribution of each factor, conduct two counterfactuals
 - 1. conditional counterfactual: consider alternative scenarios for B_t , while plugging in the actual u_t estimates
 - 2. unconditional counterfactual: alter the shock size, while maintaining the actual estimates of B_t

The reduced-form VAR can be rewritten as:

$$\begin{bmatrix} Y_t \\ \pi_t \\ R_t \end{bmatrix} = \begin{bmatrix} B_{1,t}^{11} & B_{1,t}^{13} & B_{1,t}^{13} \\ B_{1,t}^{21} & B_{1,t}^{23} & B_{1,t}^{23} \\ B_{1,t}^{31} & B_{1,t}^{33} & B_{1,t}^{33} \end{bmatrix} \begin{bmatrix} Y_{t-1} \\ \pi_{t-1} \\ R_{t-1} \end{bmatrix} + \dots,$$


- The coefficients in the first two rows (Y and π equations) form the non-policy block, while those in the last row (R equation) can be regarded as the policy block
 - this is because the coefficients in the third row correspond to the Taylor rule coefficients
 - ▶ for instance, B³¹_{1,t}, B³²_{1,t}, and B³³_{1,t} are interpreted as the interest rate responses to lagged output and inflation, and interest rate persistence (AR(1)), respectively
 - e.g., Primiceri (2005)

- Two dimensions of the conditional counterfactual
 - dimension 1: on the non-policy block vs. on the policy block
 - dimension 2: the coefficients in the B_t matrices at specific periods prevail over the entire sample period
- Regarding the 2nd dimension, we set two periods based on the Bank of Korea's governor term
 - ► Governor Chun (-2002:Q2) / Governor J. Lee (2014:Q2-)
 - right after the Asian currency crisis / most recent period
 - early years of the inflation-targeting regime (launched in 1998) / period of a low-inflation environment
- For the possible four cases, calculate standard deviations of output and inflation
 - use the mean of the coefficient estimates over the governor terms

		Actual	CF 1: Y and π equations		CF 2: R equation	
Variable	Sample		Governor Chun	Governor J. Lee	Governor Chun	Governor J. Lee
Output	Whole	1.33	1.41	1.29	1.36	1.38
	00-07	1.72	1.76	1.62	1.72	1.70
	11-18	0.86	1.01	0.88	0.86	0.88
Inflation	Whole	0.55	0.56	0.57	0.55	0.55
	00-07	0.56	0.57	0.59	0.56	0.56
	11-18	0.47	0.48	0.47	0.47	0.47

Median standard deviation estimates

- Change the size of shocks, while keeping the estimates for B_t's at their actual values
- This necessitate proxies for the shock size
 - ► use the standard deviation estimates of the reduced-form residuals (u_t) as the proxy

Solid: median; Dashed: 68% bands

- Conduct Monte Carlo experiments based on the standard deviation estimates of the reduced-form residuals
- Benchmark periods: 2000:Q1 (high volatility) / 2018:Q2 (low volatility)
- Thus unconditional counterfactuals assume that the shock volatility of a specific period, either 2000:Q1 or 2018:Q2, is maintained over the whole sample span

Variable	Sample	Actual	CF 1: 2000:Q1	CF 2: 2018:Q2
Output	Whole	1.42	2.82	0.88
	00-07	1.60	2.57	0.89
	11-18	0.83	2.51	0.67
Inflation	Whole	0.53	0.97	0.27
	00-07	0.64	0.93	0.26
	11-18	0.35	0.97	0.26

Median standard deviation estimates

COUNTERFACTUAL: BELLS AND WHISTLES

- Lucas (1976) critique
- Benati and Surico (2009, AER)
 - in the existing literature on the Great Moderation, the conclusion between "good luck" and "good policy" hinges critically upon the empirical methodology
 - VARs tend to ascribe a dominant role in the reduced aggregate volatilities to the size of shocks ("good luck")
 - whereas the role of good policy stands out more with the DSGE approach (in favor of "good policy")
- The same argument may be applicable to the results of this paper

Appendix

APPENDIX 1: METHODOLOGY

Assumptions: states follow random walks

$$\begin{split} B_t = \mathsf{vec}([c_t, B_{1,t}, B_{2,t}, B_{3,t})], \quad B_t = B_{t-1} + \nu_t, \quad \nu_t \sim NID(0, Q) \\ \alpha_t = \mathsf{vec}(A_t^{-1}), \quad \alpha_t = \alpha_{t-1} + \zeta_t, \quad \zeta_t \sim NID(0, S) \\ \sigma_t = \mathsf{vec}(\mathsf{diag}(\Sigma_{e,t})), \quad \log \sigma_t = \log \sigma_{t-1} + \eta_t, \quad \eta_t \sim NID(0, W) \end{split}$$

- Informative but diffuse conditional prior distributions
 - calibrated based on 40 initial training samples (90:Q1-99:Q4)
 - OLS estimates parameterize prior means, serve as starting values
- ► MCMC algorithm to generate sample from unknown joint posterior distribution p(B^T, Σ^T_u, Q, S, W|Z^T)

APPENDIX 2: SUMMARY OF GIBBS SAMPLER

- 1. Initialize A^T , Σ_e^T , hyperparameters Q, S and W
- 2. Draw coefficients from $p(B^T|Z^T, A^T, Q)$, Carter-Kohn (1994)
- 3. Draw covariances from $p(A^T | Z^T, \Sigma_e^T, S)$, Carter-Kohn (1994)
- 4. Draw volatilities from $p(\Sigma_e^T | Z^T, B^T, A^T, W)$, Carter-Kohn (1994)
- 5. Draw hyperparameters from $p(Q|Z^T, B^T)$, $p(S|Z^T, A^T)$, $p(W|Z^T, \Sigma_e^T)$
- 6. Go to 2, generate 22k after 20k burn-in iterations

DIGRESSION: ISSUES ON PRICE PUZZLE

- Rationale by Sims (1992, EER): Omitted variable problem
 - the missing information is the central bank's concern about future inflation
 - so a policy tightening in anticipation of future inflation would be erroneously interpreted as a policy shock
 - a possible resolution is the inclusion of a commodity price index to supplement information about future inflation
- ► Hanson (2004, JME):
 - the commodity price is unlikely to capture the central bank's expectations on future inflation
 - evidence of a price puzzle stands out for the pre-Volcker sample, when the Fed did not raise the interest rate sufficiently in response to inflation (passive MP)

DIGRESSION: ISSUES ON PRICE PUZZLE

- Castelnuovo and Surico (2010, EJ):
 - use a NK-DSGE model as the data generating process and estimate VARs with artificial data
 - Sims' (1992) argument is valid only when MP is passive
 - only when MP is passive, inflation expectations have explanatory power for inflation dynamics
 - thus they become helpful in mitigating the price puzzle
- Coibion (2012, AEJ-Macro)
 - studies the disparity in results from a standard VAR and the Romer and Romer (2004, AER) narrative approach
 - data from 1970:1 to 1996:12

DIGRESSION: ISSUES ON PRICE PUZZLE

Impulse responses to a MP tightening shock in Coibion (2012)

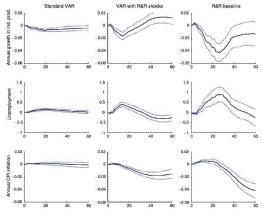


FIGURE 2. IMPULSE RESPONSES OF MACROECONOMIC VARIABLES TO MONETARY POLICY SHOCKS

 \implies Price puzzle seems to prevail in the R&R framework as well