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Abstract

The growth of high-skill jobs has stagnated since the 2000s, and this stag-

nation has been accompanied by a rise in software innovation relative to

equipment. We provide empirical evidence that the occupational use of soft-

ware or equipment is related to cognitive or routine tasks by occupation and

propose a model that explains both employment share and software inno-

vation trends. In the model, equipment-embodied technical change reduces

the demand for routine tasks that intensively use equipment. Hence, the

demand for equipment decreases, which leads to a rise in software innova-

tion. This rise, in turn, generates a reversal in the demand for cognitive tasks.
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1 Introduction

The occupational structure – the distribution of labor across occupations – has

changed dramatically in the United States: the employment share of middle-skill

jobs has declined since the 1980s (job polarization), and the growth of high-skill

jobs has stagnated since the 2000s (skill demand reversal, Beaudry et al., 2016).

Many suggest recent technological change as a reason for the changes in the

occupational structure: recent technological change has replaced routine tasks,

and jobs in the middle are intensive in routine tasks. This paper suggests that

the relation between technological change and occupational structure is bidirec-

tional: technological change shapes the occupational structure, but changes in

the occupational structure also affect the direction of the following technological

change. Notably, the bi-directional relation can provide an explanation for both

job polarization and skill demand reversal simultaneously.

We first document that skill demand reversal was accompanied by a higher

growth in software innovation relative to equipment (figure 2.4a) and argue that

this change in the direction of innovation was closely related to changes in the oc-

cupational structure of the U.S. economy. We do so by combining two datasets—

the National Income and Product Account (NIPA) and O*NET Tools and Tech-

nology Database. The newly merged dataset shows that the average amount of

investment in software and/or equipment by occupation are strongly linked to

the tasks of each occupation. Namely, software is used intensively by cognitive

(high-skill) occupations, while equipment is used intensively by routine (middle-

skill) occupations (figure 2.6).

We then provide a unified framework that endogenously explains both skill

demand reversal and the rise of software innovation. The model has three novel

features. First, the model features workers of heterogeneous skill sorting into

heterogeneous tasks, associated with different uses of two types of capital (soft-

ware and equipment). Second, technological changes in the model are embodied

into capital, and innovators endogenously choose which type of capital to inno-

vate. Last but not least, all workers use two types of capital, but with different

intensities, depending on their occupations. This situation departs from the typ-
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ical assumption that only particular kinds of occupations are affected by a single

type of technical change. These features enable us to simultaneously analyze

the bi-directional interaction between the occupational structure and direction of

technical change.

In the model, the intensities at which each occupation uses software and equip-

ment can be measured directly from the newly merged dataset mentioned above.

The production of goods occurs by combining occupational services, and they are

provided by workers in each occupation using equipment and software. Equip-

ment and software are modeled as a composite of infinitesimal varieties provided

by innovators, who are free to choose a type of capital to innovate.

After characterizing the equilibrium, we prove a series of analytical compar-

ative statics in response to one exogenous change: an increase in the produc-

tivity of the equipment-producing sector.1 Increased productivity in equipment

production makes middle-skill occupations more productive than others since

middle-skill occupations use equipment most intensively. As a result, labor flows

out from these jobs and into high- and low-skill jobs when occupational services

are complementary in production. However, the decline in middle-skill employ-

ment also means that the demand for equipment declines, inducing innovators

to shift their focus away from equipment and more toward enhancing software.

In turn, the rise of software leads to skill demand reversal if jobs are complemen-

tary: middle-skill jobs were already declining (job polarization), the employment

share of high-skill jobs decelerates since these jobs use software most intensively,

and consequently, skill demand becomes concentrated in low-skill jobs.

The complementarity between occupational services implies that the demand

for certain occupations can be lowered when improving a type of capital used

heavily by the occupations. Importantly, software capital is heavily used by cog-

nitive (not routine) task-intensive occupations. For example, an introduction of

3D modeling software helps architects work more quickly. When the demand for

3D modeling tasks does not increase enough to compensate for the increase in

the productivity of architects, the demand for architects should decrease.

1We also document a faster increase in the productivity of the equipment-producing sector in
the data.
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One may wonder how we can distinguish software from equipment as soft-

ware is generally embodied in equipment. Equipment is necessary for the use of

software, but it can install a variety of software, and the variety itself can change

over time. An operational software usually comes with the purchase of a PC, but

many additional software can be installed for different types of tasks afterwards.

The above example of 3D modeling software also illustrates the software inno-

vation we highlight in this paper, distinguished from equipment innovation. In

fact, the software share of intermediate input in equipment production has been

roughly constant over three decades, while the software investment relative to

equipment investment has increased dramatically (figure 2.5).

We verify the empirical validity of the model’s mechanism using the fact that

the decline in the relative price of equipment to software varies across industries.

The model predicts: i) a negative relationship between the speed of decline in the

relative price of equipment to software and the growth of middle-skill employ-

ment relative to high-skill employment and ii) a positive correlation between the

speed of decline in the relative price of equipment to software and the relative

growth of software innovation to R&D other than software. We confirm signifi-

cant correlations in both cases.

Confident of the mechanism, we use the model to quantify its importance.

Our quantitative analysis shows that the channel of directed technical change

can account for 70 to 80% of the rise in software and skill demand reversal, where

the latter is measured by the gap between the actual series and the level implied

by the linear trend of the 1980s.

The results have two important implications. First, technological change and

the occupational structure have a bi-directional interaction. Technical progress

shapes occupational demand, but this change in the occupational demand can

also lead to another type of technical change that generates a different occupa-

tional structure. Though the importance of task-specific technological change

(or skill-biased technological change) has been emphasized in the literature, the

source of those technologies has been investigated to a lesser extent. This pa-

per addresses this by analyzing two different types of innovation endogenously

responding to changes in the occupational structure.
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Second, software and equipment capital measured in the National Accounts

is a good proxy for the technological changes that shape the structure of the la-

bor market. By linking recent technological changes to different types of capi-

tal, we bring the directional technical change mechanism to an empirical dimen-

sion. Since technological changes have significant impacts on many economic

variables, careful investigation of the composition of capital investment can be

fruitful for understanding the measured impact of recent technological changes.

Related Literature The relationship between polarization and increases in the

productivity of middle-skill occupations, which are intensive with respect to rou-

tine tasks, is well documented in the literature (e.g., Autor et al., 2006; Autor and

Dorn, 2013; Goos et al., 2014, among others). Fewer studies have discussed the

puzzling observation that there has been a flattening of the demand for high-

skill workers around 2000, known as “Great Reversal (or skill demand reversal)”

(Beaudry et al., 2016; Valletta, 2016).

In particular, Beaudry et al. (2016) was the first to document the reversal and

suggests an explanation based on a technology boom-bust cycle. When the imple-

mentation of new technology has the form of capital investment, an introduction

of new technology initially has a high level of marginal productivity and there-

fore generates a boom in the demand for cognitive occupations. As the marginal

productivity of the technology decreases, the demand for highly paid jobs also

starts to decrease.

Our paper suggests that it could be a change in the direction of technology

generating the skill demand reversal, not a stopping of investment. Actually,

the relative importance of software development relative to other types of R&D

has continually increased (figure 2.4). In addition, we see a continuation of de-

creasing middle-paying jobs in the 2000s with a much greater increase in the low-

paying jobs (figure 2.3). If the reversal happened because we entered the maturity

stage of new technology around 2000, we might have seen a more stablized oc-

cupational structure than observed in the data.

Several papers analyze the consequences of task-specific technological change

on the labor market with an assignment model (Costinot and Vogel, 2010; Lee and

5



Shin, 2017; Michelacci and Pijoan-Mas, 2016; Stokey, 2016; Cheng, 2017, among

others). We have a similar assignment feature but characterize tasks by their

different uses of two types of capital, and we also introduce endogenous task-

specific technological change generated from innovations on each type of capital.

By doing so, we obtain a direct mapping of two distinctive task-specific techno-

logical changes to observed data.

Krusell et al. (2000) also links the price of equipment capital to skill-biased

technical change and emphasizes that skill-capital complementarity (capital sub-

stitutes low-skill labor more than high-skill labor) is key to understanding how a

rise in the productivity of capital leads to higher demand for high-skill workers.

In our model, the substitutability between labor and capital is the same across

occupations. We assume that occupations vary in how intensively they use dif-

ferent types of capital and that the occupations are complementary. Still, our

model nests the model of Krusell et al. (2000) as a special case – a version of two

types of tasks, with one task having zero intensity of capital.

While Krusell et al. (2000) classifies workers by education, we classify workers

by occupation. High-educated workers may well be able to do what less educated

workers usually do, whereas tasks performed by certain occupations may not be

able to be substituted by tasks by other occupations. Indeed, recent papers such

as Goos et al. (2014) and Lee and Shin (2017) highlight complementarity between

tasks as key to understanding task-level employment changes (i.e., polarization).

In this regard, our paper complements Krusell et al. (2000) by linking capital-

embodied technical change to occupational employment.

Cheng (2017) measures the routine-biased technological change from the dif-

ferent capital intensities across occupations. Unlike ours, Cheng (2017) measures

capital intensities across occupations from the industry-level capital share and

variations in the composition of occupations across industries and confirms that

middle-skill occupations are capital intensive. We show, however, that the dis-

tinction between equipment and software is important, as software is not used

intensively in middle-skill jobs. In addition, we explain why a particular type of

technology may or may not respond.

One of the main features in this paper is that the relation between technolog-
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ical change and labor market outcome is bi-directional, and therefore the evo-

lution of technology is partially endogenous. Acemoglu and Restrepo (2016)

and Hémous and Olsen (2016) also analyze the interaction between technologi-

cal change and the labor market with the directed technical change framework

of Acemoglu (2002). These authors provide new insights on how automated

technology evolves and affects labor market outcomes, but the interpretation of

technology with respect to the observable data is not straightforward, making

its empirical test diffcult. Our technological changes are directly measured from

investment in software and equipment in the National Accounts, and tasks are

mapped to occupations, facilitating the quantification of the model.

Recent studies by Bárány and Siegel (forthcoming) and Lee and Shin (2017)

show that either task-specific technological change or sector-specific technologi-

cal change can lead to both job polarization and structural change. Since a single

type of technological change can result in both phenomena, it is not easy to con-

clude whether the source of technological change is task or sector specific. Our

paper implies that the technological change embodied in a particular type of cap-

ital could be a source of task-specific technological change that can generate both

phenomena simultaneously.

Another important feature of this paper is distinguishing software capital

from equipment capital. Software investment is becoming increasingly impor-

tant, as evidenced by its rapid rise as a share of total investment. Aum et al.

(2018) analyzes the role of computer capital (hardware and software) in shaping

the dynamics of aggregate productivity. Koh et al. (2016) emphasizes the impor-

tance of software capital (more broadly, intellectual property product capital) in

accounting for the declining labor share in the US. Our model also generates a

decline in the labor share as a result of higher software investment, and we show

that there is a significant correlation between a decline in the labor share and

software intensity at the industry level.

The rest of the paper is organized as follows. In section 2, we summarize the

relevant empirical facts. In section 3, we present the model and characterize its

equilibrium. In section 4, we conduct analytical comparative statics and in sec-
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tion 5, we verify that the model’s predictions hold empirically across industries.

In section 6, we calibrate the model to quantify how important its mechanism

is for accounting for the rise of software and skill demand reversal. Section 7

concludes.

2 Key Facts

We document several data observations. First, equipment-producing industries

have experienced much faster total factor productivity (TFP) growth than software-

producing industries. Second, the secular pattern of polarization shows that the

rise of high-skill occupations slowed with a greater increase in low-skill occu-

pations since the mid-1990s. Third, software development expenditures have

increased relative to equipment-related R&D expenditures, especially since the

mid-1990s. Fourth, the intensity of equipment and software across tasks is closely

correlated with routine task intensity and cognitive task intensity.

2.1 Sectoral Productivities: Equipment vs Software

The input-output table published by BEA reports the industrial composition of

each type of capital investment annually. From the table, we obtain the weights

on detailed industries that contribute to the production of equipment and soft-

ware investment goods for every year2. The productivities of equipment- and

software-producing industries are then computed as a weighted average of individual-

level industrial TFP, on the basis of their contribution. Specifically, we compute

the total factor productivity (TFP) of equipment- and software-producing indus-

tries according to the Törnqvist index.

Using BEA’s Industry Account, an industry i’s TFP growth between time u

and t can be computed as

log(TFPi,t/TFPi,u) = log(yi,t/yi,u)−
αi,t + αi,u

2
log(ki,t/ki,u),

2For example, equipment investment goods are a composite of 22 commodities out of 61 com-
modities, classified under the BEA industry code.
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where y is the real value added per employment, k is the real non-residential

capital divided by the number of employment, and α is one minus the labor share.

From the input-output table of each year (t), we observe the composition of

commodities (industries) that consists of equipment and software, respectively.

Let I be the total number of industries. Then we can represent equipment and

software as

ptEt =
I

∑
i

pi,tEi,t, ptSt =
I

∑
i

pi,tSi,t,

where Ei or Si is 0 when industry i’s output is not a part of equipment or software.

Then the share of industrial output in equipment or software is obtained as

ωe
i,t ≡ pi,tEi,t/ptEt, ωs

i,t ≡ pi,tSi,t/ptSt.

The TFPs of the equipment- and software-producing industries are computed

by

log(TFPe,t/TFPe,t−1) = ∑
i

ωe
i,t + ωe

i,t−1

2
log(TFPi,t/TFPi,t−1),

log(TFPs,t/TFPs,t−1) = ∑
i

ωs
i,t + ωs

i,t−1

2
log(TFPi,t/TFPi,t−1).

The results are presented in figure 2.1. The figure shows that equipment has been

made much more productively than software since 1980.
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Fig. 2.1: TFP of equipment- / software-producing industries
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Fig. 2.2: Changes in employment structure in the US by decade
Note: Each point on the horizontal axis is a group of occupations composing 1% of total
employment in 1980, sorted by the 1979 average log wage.

2.2 The Pattern of Job Polarization

Figure 2.2 shows changes in the employment share across skill percentile by

decade from 1980, computed from Census/ACS data. Each point in the skill

percentile represents a group of occupations representing 1% of the labor supply

in 1980, sorted by the average log hourly wage in 1979.

The figure shows clear U-shaped changes in employment share from 1980 to

2010. By assessing the three lines separately, however, we see that the rise in

high-skill occupations is strongest in the first two decades, while that of low-

skill occupations accelerates during 2000-2010. Moreover, the range of shrinking

occupations shifts toward the right across decades.

Similar observations are also in the annual data from CPS when occupations

are classified into three groups: cognitive (high-skill), routine (middle-skill), and

manual (low-skill)3. We compare two different trends – a linear trend from 1980

to 1995 and an HP trend from all data points – of the employment share of each

occupational group. Figure 2.3 confirms that there were breaks in the trends of

employment shares of cognitive occupations and manual occupations in the mid-

1990s. Notably, the decline in routine occupations continued until recently.

3The classification of occupations is based on the one-digit SOC. Cognitive occupations are
management, professionals, and technicians. Routine occupations are machine operators, trans-
portation, sales and office, mechanics, and miners and production.
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Fig. 2.3: Employment share of cognitive, routine, and manual occupations
Note: 1) Cognitive occupations are management, professionals, and technicians. Routine oc-
cupations include office and sales, transportation, machine operators, mechanics, construction
and production workers.
2) The blue line is the linear trend from 1980 to 1995, and the red (dashed) line is the HP trend
with a smoothing parameter of 100. All vertical axes represent 15% of the range.

2.3 Rising Software Innovation

We now turn to the R&D composition in the US. Software development expen-

ditures can be obtained from Crawford et al. (2014) or from differences between

R&D in NIPA, excluding software development and R&D recorded in the inno-

vation satellite account, which includes software development.

Figure 2.4a shows the size of software development relative to R&D expen-

ditures funded by the manufacturing sector, excluding chemical-related R&D, 4

across years. As a robustness check, we also assess the relative size of software

development relative to all other R&Ds only excluding chemicals (figure 2.4b).

Both show an increasing pattern, especially since the mid-1990s, suggesting that

changes in the pattern of polarization could be related to increasing software in-

novation.

Later, we argue that the increasing innovational expenditures in software ex-

hibit a change in the direction of technical progress away from equipment to soft-

ware. One may think that software and equipment are difficult to distinguish as

early innovation in equipment is successful only after combined with software.

While innovative equipment also uses software, operational software has a differ-

4We view R&D expenditures funded by the manufacturing sector excluding chemical-related
industries as the expenditures most closely related to R&D on equipment.
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Fig. 2.4: Software innovation
Note: 1) We exclude chemical industries as it is least related to capital innovation. 2) The blue
line is the linear trend from 1980 to 1995, and the red (dashed) line is the HP trend with a
smoothing parameter of 100.

ent role from the software used directly by workers for certain tasks. Operational

software only helps in the task that can be directly done through (many different

types of) machines.

Operational software is usually installed in a stage of machine production;

hence, it can be captured as an intermediate input of the equipment-producing in-

dustries. In contrast, the software used directly by workers – such as accounting

software, designing software, enterprise resource planning, and statistics pack-

ages – is usually installed after the production of a machine (usually PC), and

should be captured as investment by firms. Indeed, the amount of software used

as an intermediate input in the production of equipment5 has been roughly con-

stant over time, while the software investment relative to IT equipment has in-

creased, especially since mid 1990s (figure 2.5), suggesting that the increase in

software investment captures software development supporing workers’ tasks

directly, distinguished from an innovation enabling fast operation of a machine.

5We obtain intermediate consumption of software commodities, 511200 (software publishers)
and 541511 (custom computer programming services) from a detailed Input-Output table, avail-
able for the year 1997, 2002, and 2007. Then, we linearly inter- and extra-polate the ratio of com-
modities 511200 to 511 and 541511 to 5415 to periods of 1980 to 2014. By multiplying the estimated
ratio to intermediate use of industries 511 and 5415, we estimate software intermediates for 1980
and 2014.
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2.4 Capital Use by Occupation

We provide data evidence to document strong connections between the use of

different types of capital across occupations. Specifically, we construct capital

use by occupation by combining two data sources – NIPA and the O*NET Tools

and Technology Database.

The O*NET Tools and Technology database provides information about the

types of tools and technology (software) used by each occupation. One caveat of

this dataset is that it does not provide information about the price of each item. To

address this shortcoming, we attempt to link capital items in O*NET Tools and

Technology to the NIPA data obtained from the Bureau of Economic Analysis

(BEA).

Specifically, we make a naive concordance between the UN Standard Product

and Services Code (UNSPSC), a product classification system used in the O*NET

database, and 25 categories of non-residential equipment in NIPA table 5.5 (de-

tails can be found in the appendix A). Then, we distribute the total amount of

a particular type of equipment investment to each occupation by means of the

number of tools included in the investment category, according to the concor-

dance. By doing this, we assign value information to the number of tools used by
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the occupation.6

For example, suppose that firms have invested USD 20 billion in metalwork-

ing machinery in the NIPA table. According to the constructed concordance, met-

alworking machinery includes a total of 139 commodities in the UNSPSC. Some

occupations use none of the 139 commodities, while other occupations use vari-

ous amounts of the commodities in the category. Because we know the amount of

employment by occupation, we can calculate the total number of metalworking

machinery items used by all workers in a given year. Then, we can approximate

the amount attributed to an individual occupation by distributing the total USD

20 billion investment according to the number of items used by the occupation.

Subsequently, dividing by the number of employees provides an estimate of the

per capita investment in metalworking machinery by occupation.

The per capita investment in equipment by occupational skill group is shown

in figure 2.6a, where an occupational skill group is defined as a group repre-

senting 1% of total employment among all occupations ranked by mean hourly

wages. We also plot the routine-intensive task share – the share of routine-intensive

employment out of total employment within the skill group – in the same figure.

Here, routine-intensive employment is defined as employment in occupations

with the highest one-third routine task index of all occupations, where the rou-

tine task index is computed using the O*NET task database following Acemoglu

and Autor (2011).

In figure 2.6b, we plot software investment per capital across the same wage

percentile and the cognitive-intensive task share defined similarly to the routine-

intensive task share. Again, the cognitive task index is computed following Ace-

moglu and Autor (2011).

We can see from the figures that middle-skill workers use equipment more

intensively, whereas high-skill workers use software more intensively. Moreover,

the use of equipment closely follows the routine task share, while the use of soft-

ware is closely related to the cognitive task share. We also illustrate the use of

6Of course, this does not provide perfect information on the value of tools as it only differ-
entiates an average price across BEA categories. As long as average prices in each category of
BEA classification have a meaningful dispersion, however, this method can alleviate bias from
ignoring all the price information.
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the equipment subitem by occupation in figures 2.6c (industrial equipment) and

2.6d (industrial and information processing equipment). Among the equipment

subitems, industrial equipment is most strongly correlated with the routine task

intensity.

3 Model

Now, we present a model capturing the facts in the previous section. In particular,

we aim to capture endogenous interactions between the occupational structure

and the directional technical change.

3.1 Environment

There is a continuum of individuals endowed with human capital h ∈ [1, h̄]

drawn from a measureM(h). Specifically, we assume that
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Assumption 1 (distribution) The measure of skill, M : [1, h̄] 7→ [0, 1], is a cu-

mulative distribution function with a differentiable probability distribution function,

µ : [1, h̄] 7→ R+.

There is a continuum of tasks τ ∈ [0, τ̄], and final goods are produced by

combining task output T(τ) according to

Y =

(∫
τ

γ(τ)
1
ε T(τ)

ε−1
ε dτ

) ε
ε−1

. (1)

The task output is produced by integrating human-capital-specific task pro-

duction y(h, τ) across all skill levels used for the production of task τ:

T(τ) =
∫

h∈L(�)
y(h, τ)dh. (2)

The human-capital-specific task production, y(h, τ), depends not only on worker

human capital h but also on task τ that the worker is performing. Specifically, the

functional form of y(h, τ) is given by

y(h, τ) =

[{
αh(τ) (b(h, τ)l)

σe−1
σe + αe(τ)E

σe−1
σe

} σe(σs−1)
(σe−1)σs

+ αs(τ)S
σs−1

σs

] σs
σs−1

, (3)

where l(h) represents the level of employment of workers with human capital h

and S and E represent software and equipment, respectively.

The function b(h, τ) captures the productivity of a worker with human capital

h when she performs a task τ. We assume that b(h, τ) is strictly log supermodular.

Assumption 2 The function b(h, τ) : [1, h̄] × [0, τ̄] 7→ R+ is differentiable and

strictly log supermodular. That is,

log b(h′, τ′) + log b(h, τ) > log b(h, τ′) + log b(h′, τ),

for all h′ > h and τ′ > τ.

As shown in Costinot and Vogel (2010), assumption 2 helps to ensure positive

assortative matching (PAM). In other words, as human capital h increases, the
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higher τ task she will perform in equilibrium. Not only how each occupation

utilizes a worker’s human skill but also tasks are different with regard to the

intensities in which they use two types of capital. This second feature is essential

to understanding the differential effects of capital-embodied technical change on

various occupations. 7

The software and equipment available for workers are given by

S =

(∫ Ns

0
s(k)νs dk

) 1
νs

and E =

(∫ Ne

0
e(k)νe dk

) 1
νe

, (4)

where each variety of capital (s(k) and e(k)) is provided by a permanent patent

owner under monopolistic competition.

The production technology of software or equipment is

s(k) = Asx, e(k) = Aex,

where x is the amount of final goods used to produce software or equipment. The

production technology implies that the marginal costs of producing software and

equipment are given by the inverse of productivity, qs := 1/As and qe := 1/Ae.

New software and equipment are created from R&D expenditures Zs and Ze,

and the laws of motion for total varieties follow

Ṅs = Zs/ηs and Ṅe = Ze/ηe. (5)

Finally, the representative household has a CRRA preference given by

∫ ∞

s
e−ρt C(t)1−θ − 1

1− θ
dt,

7 The production structure allows differential effects of capital-embodied technical change on
various occupations for three reasons. First, each occupation utilizes human skill differently.
Second, occupations rely on capital with various intensities. Third, any changes in the relative
productivity at the occupation level alter relative demand for occupations through the final pro-
duction, combining all tasks.
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and the resource constraint in the economy is

C + qe

∫ Ns

0
s(k)dk + qs

∫ Ne

0
e(k)dk + Ze + Zs ≤ Y. (6)

3.2 Static Equilibrium

To characterize the static equilibrium, we take the total varieties of software and

equipment, Ne and Ns, as given. We first define the equilibrium.

Definition 1 (Static equilibrium) The static equilibrium consists of the price function

p(τ), w(h), ps(k), and pe(k), the quantity function T(τ), l(h, τ), s(k, τ), e(k, τ), and

the quantity Y such that

1. Given p(τ), the final goods producer solves

max Y−
∫

τ
p(τ)T(τ)dτ,

given equation (1).

2. For each task, the task output is produced to solve

max p(τ)T(τ)−
∫

h
w(h)l(h, τ)dh−

∫ Ns

0
ps(k)s(k, τ)dk−

∫ Ne

0
pe(k)e(k, τ)dk,

given equation (2), w(h), ps(k), and pe(k).

3. A capital provider solves

max πs(k) =
∫

τ
[ps(k)s(k, τ)− qss(k, τ)] dτ,

max πe(k) =
∫

τ
[pe(k)e(k, τ)− qee(k, τ)] dτ,

given the marginal cost qs and qe.

4. All workers choose the highest-paying occupation (task).

5. The labor market clears µ(h) =
∫

τ l(h, τ)dτ.
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From the final goods production, the demand for task output T(τ) is given by

p(τ) =
(

γ(τ)Y
T(τ)

) 1
ε

, (7)

and the price function p(τ) satisfies
∫

τ γ(τ)p(τ)1−εdτ = 1.

Since we assume that the capital producer maximizes profit under monopo-

listic competition, we obtain the price of the software and equipment as

ps(k) =
1

Asνs
and pe(k) =

1
Aeνe

, for all k.

By substituting this result into the first-order conditions from task output pro-

duction, we can show that the wage function w(h) satisfies

w(h) ≥


p(τ)1−σs −

(
αs(τ)

σs
1−σs

AsNϕs
s νs

)1−σs


1−σe
1−σs

−
(

αe(τ)
σe

1−σe

AeNϕe
e νe

)1−σe


1

1−σe

αh(τ)
− σe

1−σe

︸ ︷︷ ︸
:=ω(τ)

×b(h, τ), (8)

with equality when l(h, τ) > 0.

Equation (8) shows that the wage function w(h) can be expressed as a product

of terms depending only on τ (ω(τ)) and human capital task-specific productiv-

ity b(h, τ). The existence of PAM between h and τ follows.

Lemma 1 (Positive assortative matching) Under assumptions 1 and 2, there exists

a continuous and strictly increasing assignment function ĥ : [0, τ̄] 7→ [1, h̄] such that

ĥ(0) = 1 and ĥ(τ̄) = h̄.

The proof is same as the proof of Lemma 1 in Costinot and Vogel (2010) and is

omitted.

The equilibrium assignment ĥ is characterized by

Lemma 2 (Equilibrium assignment function) The equilibrium assignment function

ĥ(τ), price function p(τ), and the wage rate ω(τ) satisfy the following system of differ-
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ential equations.

d log ω(τ)

dτ
= −∂ log b(ĥ(τ), τ)

∂τ
, (9)

ĥ′(τ) =
γ(τ)p(τ)σs−εαh(τ)

σs ψ(τ)σe−σsY
ω(τ)σe b(ĥ(τ), τ)µ(ĥ(τ))

, (10)

p(τ) =
[
ψ(τ)1−σs + αs(τ)

σs
(
νs AsNϕs

s
)σs−1

] 1
1−σs , (11)

with ĥ(0) = 1, ĥ(τ̄) = h̄,
∫

γ(τ)p(τ)1−εdτ = 1,

ψ(τ) :=
[
αh(τ)

σe ω(τ)1−σe + αe(τ)σe
(
νe AeNϕe

e
)σe−1

] 1
1−σe , ϕe := 1−νe

νe
, and ϕs := 1−νs

νs
.

Proof In appendix C.

After the assignment function ĥ is obtained, all the equilibrium quantities and

prices can be computed.

3.3 Dynamic Equilibrium

Now consider a dynamic equilibrium where technology evolves endogenously.

The HJB equations for innovators are given by

r(t)Vs(k, t)− V̇s(k, t) = πs(k, t), (12)

r(t)Ve(k, t)− V̇e(k, t) = πe(k, t), (13)

with profit functions,

πs(k) =
∫

τ
[ps(k)s(k, τ)− qss(k, τ)]dτ =

1− νs

νs As

∫
τ

s(k, τ)dτ, (14)

πe(k) =
∫

τ
[pe(k)e(k, τ)− qee(k, τ)]dτ =

1− νe

νe Ae

∫
τ

e(k, τ)dτ. (15)

The free entry condition ensures that

Ve ≤ ηe, with equality if Ze > 0, and Vs ≤ ηs, with equality if Zs > 0.
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If both R&D’s are positive, we have ηeVe = ηsVs, and from equations (12) and

(13),

r(t) = πe(t)/ηe = πs(t)/ηs. (16)

Finally, from the household’s problem, we have a standard Euler equation:

Ċ(t)
C(t)

=
r(t)− ρ

θ
, (17)

and the transversality condition:

lim
t→∞

[
e−
∫ t

0 r(s)ds (Ne(t)Ve(t) + Ns(t)Vs(t))
]
= 0.

Now, we have a characterization of the steady state equilibrium in the follow-

ing lemma.

Lemma 3 (Steady state equilibrium) There exist sufficiently large νe < 1 and νs < 1

that are compatible with the unique steady state equilibrium, i.e.,

πe/ηe = πs/ηs = ρ, (18)

and every variable remains constant. Moreover, when σs = σe = 1,

max
{

1−νs
νs

αs(τ)
αh(τ)

+ 1−νe
νe

αe(τ)
αh(τ)

}
< 1 ensures the existence of the steady state equilibrium.

Proof In appendix C.

Intuitively, high enough νe and νs ensure profits by providing additional va-

riety that is not too great, making the rate of return on increasing variety strictly

decreasing on the total varieties. As the rate of return is strictly decreasing in the

size of varieties, we have a certain level of variety that equates the rate of return

and time preference (ρ), leading to the existence of the steady state.

We consider only a case with a no-growth steady state because no standard

balanced growth path exists when the task production is a general CES function.

Note that the source of growth (increasing variety) is a capital-augmented tech-

nological change in our model. It is well known that no balanced growth path
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would exist for a capital-augmented technical change if the production function

is not of the Cobb-Douglas form (e.g., Grossman et al., 2017). 8

Exogenous vs Endogenous Productivity Our model has both exogenous and

endogenous productivity for equipment and software. Exogenous productivity

is augmented in capital production, Ae or As, and captures how well one can

produce equipment or software that has already been introduced. For example,

as equipment production becomes faster as a result of using a faster computers

in the machine production process, this phenomenon would be captured in the

increase in Ae. Instead, endogenous productivity, Ne or Ns, captures an intro-

duction of new types of capital into the economy. For example, the development

of the 3D modeling application supporting architects would be captured by an

increase in Ns.

4 Comparative Statics

In this section, we restrict our attention to the case with σe = σs = 1, ηe = ηs and

νe = νs to obtain analytical comparative statics. Specifically, we assume

Assumption 3 The elasticities of substitution between labor and capital are 1, i.e., σs =

σe = 1. The individual task production function is then

y(h, τ) = (b(h, τ)l(h))αh(τ) Eαe(τ)Sαs(τ).

Additionally, we put several structures on the intensity functions αh(τ), αe(τ),

and αs(τ) to reflect the fact that high-skill workers use software intensively and

middle-skill workers use equipment intensively, i.e.,

Assumption 4 (intensities) The functions αh(τ) : [0, τ̄] 7→ (0, 1], αs(τ) : [0, τ̄] 7→
(0, 1] and αe(τ) : [0, τ̄] 7→ (0, 1] satisfy the following.

8In the Cobb-Douglas task production case (σs = σe = 1); however, sustained growth can
be obtained by assuming strictly positive population growth, as in Jones (1995). Every task still
grows at a different rate, so the most labor-intensive task (the slowest-growing task) would dom-
inate the economy in the limit under complementarity between tasks (ε < 1), which is similar to
the results in Ngai and Pissarides (2007) and Acemoglu and Guerrieri (2008).
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2.1 αs(τ) is differentiable and increasing on [0, τ̄].

2.2 αe(τ) is differentiable, increasing on [0, τe] and decreasing on [τe, τ̄].

2.3 αe(τe) > αs(τe), αs(τ̄) > αe(τ̄), and αe(0) = αs(0).

Now, we show that an increase in the productivity of equipment production

(Ae ↑) leads to polarization and the rise of software and skill demand reversal

when the tasks are complementary. Specifically, we focus on three main pre-

dictions of the model: (1) the polarization induced by the rise of equipment-

producing productivity in the static equilibrium, (2) the subsequent rise of soft-

ware innovation, and (3) the decreasing demand for high-skill employment in the

steady state.

Job Polarization First, we show the impact of an increase in the equipment pro-

ductivity (Ae) on the equilibrium assignment function ĥ(τ) in the static equilib-

rium (i.e., when Ne and Ns are fixed). We consider A1e < A2e and denote the

equilibrium assignment functions corresponding to A1e and A2e as ĥ1 and ĥ2, re-

spectively.

Proposition 1 (Polarization) Consider A1e < A2e. Suppose ε < 1 and assumptions

1 to 4. For sufficiently small α′h(τ), we have τ∗ ∈ (0, τ̄) such that ĥ1(τ
∗) = ĥ2(τ

∗),

ĥ1(τ) < ĥ2(τ) for τ ∈ (0, τ∗), and ĥ1(τ) > ĥ2(τ) for τ ∈ (τ∗, τ̄).

Proof In appendix C.

Proposition 1 states that there will be a shrinking task employment around τ∗

where corresponding equipment intensity αe(τ∗) is relatively higher than αe(0)

and αe(τ̄). Figure 4.1 illustrates the change in the assignment function with A1e

(blue solid line) and A2e > A1e (red dashed line). For a given task τ ∈ [τ∗ −
ε, τ∗ + ε], we can see that employment decreases because we have higher ĥ2(τ)

on the left side of τ∗ and lower ĥ2(τ) on the right side of τ∗.

As shown in section 2, tasks with higher equipment intensities are consistent

with routine-intensive tasks; hence, the proposition states that decreasing routine
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Fig. 4.1: Equilibrium comparison: A1e vs A2e > A1e

employment can be caused by an increase in the productivity of the equipment-

producing sector.

The condition of sufficiently small α′h(τ) is assumed because the impact of the

change in equipment prices on human capital depends on the relative size of αh

as well as on αe. Note that this condition does not imply that the range of αh(τ)

must be tight. In a numerical example with αh(τ) varying from .2 to .9, we still

see changes in the assignment function consistent with the analytical comparative

statics9.

The intuition of the proposition is as follows. An increase in the equipment

productivity (Ae) leads to a decrease in the price of equipment (qe), which in-

creases the productivity of all tasks but to a greater extent for tasks with higher

equipment intensities. When the production is more complementary in the tasks

than the relation between humans and technology (ε < 1), the rise of relative pro-

ductivity causes factors to flow out to other tasks, which results in polarization.10

The Rise of Software The profits from providing software and equipment are

proportional to the demand, which, in turn, is proportional to the task output

times the factor intensity of the task. Hence, changes in the relative size of task

production results in changes in the profit from providing each type of capital

9The numerical exercise can be provided upon request.
10The intuition is similar to other papers in the literature, for example, Lee and Shin (2017),

Goos et al. (2014), and Cheng (2017). Importantly, we highlight that the changes in the occupa-
tional structure itself can lead to another type of task-specific technological change, which we
explore in the following propositions.
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according to the corresponding factor intensity.

We know from proposition 1 that the employment share around τ∗ (in the

middle) shrinks. As long as α′h(τ) is small, the share of task production around

τ∗ must also decrease. Meanwhile, αe(τ∗) > αs(τ∗), together with αe(τ̄) < αs(τ̄)

and αe(0) = αs(0) (assumption 4), imply that a decrease in production share

around τ∗ actually decreases e more than s, and an increase in production share

around τ̄ increases s more than e. Therefore, providing software becomes more

profitable for innovators. Innovators then focus innovation toward software, re-

sulting in higher Ns/Ne in the new steady state.

Although this prediction is valid for most reasonable quantifications, we must

impose tight restrictions on the structures of the intensities over the entire range

of τ ∈ [0, τ̄] to prove the analytical proposition as we are comparing the ratio

of two integrations over all τ (πe/πs ∝
∫

αe(τ)p(τ)T(τ)dτ/
∫

αs(τ)p(τ)T(τ)dτ).

To express the analytical proposition in a simpler way, we consider an approxi-

mation with three discrete tasks (j = 0, 1, 2 for low, middle, and high) for now.

Specifically, consider a production technology given by

Y =

(
∑

j
γ

1
ε
j T

ε−1
ε

j

) ε
ε−1

for j = 0, 1, 2, (19)

with Tj = (b(h, j)l(h))αh,j Eαe,j Sαs,j . The detailed derivation of the equilibrium con-

ditions for this approximation can be found in appendix B. With this approxima-

tion, assumptions 1 and 4 are replaced by the following.

Assumption 5 (distribution-II) The measureM : [1, h̄] → [0, 1] has a differentiable

p.d.f. µ(h), where µ(h) is sufficiently small everywhere.

Assumption 6 (intensities-II) The discrete intensities satisfy the following.

6.1 αe,1
αh,1

>
αe,0
αh,0
≈ αe,2

αh,2
.

6.2 αe,0 ≈ αs,0, αe,1 > αe,2, and αs,2 > αs,1.

In assumption 5, we add the requirement for µ(h) to be sufficiently small to

consider the discretization as an approximation of continuous tasks matched with

a continuum of skills.
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Assumption 6.1 states that task 1 is more equipment intensive relative to labor

than task 0 and task 2. Assumption 6.2 states that middle-skill tasks use equip-

ment more than software, high-skill tasks use software more than equipment,

and low-skill tasks use software and equipment similarly.

Denote the total varieties in the previous steady state as Ns1 and Ne1 and those

in the new steady state as Ns2 and Ne2. Then, we have

Proposition 2 (Rise of software) Consider A1e < A2e with discretized tasks (19),

where equipment variety is at least as large as software variety in the original equilib-

rium (Ne1 ≥ Ns1). Suppose ε < 1, νe = νs, assumptions 2, 5, and 6. In the new steady

state, software variety increases more than equipment variety, i.e., Ns2/Ne2 > Ns1/Ne1.

Proof In appendix C.

Skill Demand Reversal We now show that an increase in Ns results in skill

demand reversal (i.e., a decrease in the demand for high-skill labor). We consider

Ns2 > Ns1 and denote ĥ1 and ĥ2 as the equilibrium assignment corresponding to

Ns1 and Ns2, respectively.

Proposition 3 (Skill demand reversal) Consider Ns2 > Ns1 and suppose ε < 1 and

assumptions 1 to 4. With sufficiently small α′h(τ), the matching function shifts upward

everywhere, i.e., ĥ2(τ) > ĥ1(τ) for all τ ∈ (0, τ̄).

Proof In appendix C.

Note that an increase in variety increases the productivity of software-intensive

tasks more than that of other tasks (equation 11). Following the same intuition

as in the proposition 1, this increase would lead to a reallocation of labor from

high-skill tasks to lower-skill tasks under complementarity (ε < 1). The change

in the assignment function is depicted in figure 4.2, which shows that all workers

downgrade their tasks.
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Fig. 4.2: Equilibrium comparison: Ns1 and Ns2 > Ns1

5 Empirical Evidence

This section checks the validity of the model’s predictions using industry-level

data. Specifically, we test two predictions. First, the model predicts a negative

relationship between changes in the relative price of software to equipment and

changes in middle-skill employment relative to high-skill employment. Second,

the model implies a positive correlation between changes in the relative price

of software to equipment and changes in software innovation relative to other

innovation. Note that, in our model, the prices of equipment and software are

inversely related to productivity in the equipment- and software-producing sec-

tors, respectively.

We measure the relative price of equipment to software by industry from Sec-

tion 2 of the Fixed Asset Table provided by BEA. The prices are different by indus-

try as each industry uses a different combination of subitems within the category

of equipment or software. For the relative employment of middle-skill to high-

skill occupations, we use the employment of routine occupations divided by the

employment of cognitive occupations by industry, computed from census data.11

Finally, the relative size of software innovation to other innovation is measured

11Routine occupations include machine operations, office and sales, mechanics, construction
and production, and transportation occupations. Cognitive occupations are management, pro-
fessional, and technical occupations. The level of employment is obtained from the 1980, 1990,
and 2000 censuses and the American Community Survey (ACS) 2010, retreived from IPUMS. We
made a concordance between consistent industry code ind1990 and indnaics using employment
in the 2000 Census. Then, employment by indnaics was merged into 61 BEA industry codes
based on a concordance between the BEA industry code and NAICS.
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Fig. 5.1: Changes in the relative price and employment / innovation

by own account software investment (in-house software investment by firms) di-

vided by other R&D’s by industry.

Figure 5.1a shows the differences in the growth of middle-skill and high-skill

employment against changes in the price of software relative to the price of equip-

ment. Figure 5.1b shows the changes in software innovation net of R&D expen-

ditures excluding software against changes in the relative price. The first has

a negative relation, and the second has a positive relation, consistent with the

model’s predictions.

To determine whether these relations are statistically significant, we estimate

the following regression:

∆ log yi,t = a + ct + ∆ log(qs,i,t/qe,i,t) + εi,t,

where yi,t is either the ratio of routine (middle-skill) employment to cognitive

(high-skill) employment or the ratio of in-house software investment to R&D ex-

penditures excluding software. The estimation results, which show significant

relations between the two variables, are given in table 5.1.

6 Quantitative Analysis

We now quantify the importance of the main mechanism. To map the tasks to oc-

cupational groups in the data (as in table 6.3), we discretize our model (appendix

28



Tab. 5.1: Estimation results

Routine/Cognitive Sft/R&D (excl. sft.)

Sft price/ -0.220∗∗∗ -0.152∗∗ +0.747∗∗ +0.717∗∗∗

Eqp price (0.000) (0.014) (0.016) (0.001)

Fixed Effects Yes No Yes No

R2 0.172 0.054 0.117 0.064
p-values in parentheses.

B).12 In addition, we introduce exogenous task-specific productivities (Mj) in the

quantitative analysis, as in equation (20). The Mj’s are introduced to capture

any types of routine-biased changes not captured in capital-embodied technical

changes (Ai’s and Ni’s).

yj(h) = Mj

{αh,j
(
b(h, j)lj(h)

) σe−1
σe + αe,jE

σe−1
σe

} σe(σs−1)
(σe−1)σs

+ αs,jS
σs−1

σs


σs

σs−1

(20)

Exogenous Variation Note that we have two types of exogenous productivity

(Ai’s and Mj’s), as well as endogenous productivity (Ni’s), and the changes in

exogenous productivities (Ai’s and Mj’s) are sources of exogenous variation in

the main analysis.

We use the TFP of equipment- or software-producing industries to map Ai’s

as data13. The additional routine-biased technical changes (Mj’s corresponding to

routine jobs – administrative, machine operation, transportation, sales, mechan-

ical, and production occupations) are set to match changes in the employment

share of routine occupations in the model with the data exactly.

12Following the literature, we label high-, middle-, and low-skill occupations as cognitive, rou-
tine, and manual occupations, respectively. Cognitive occupations include management, profes-
sional, and technical occupations. Routine occupations are administrative, machine operation,
transportation, sales, mechanical, and production occupations. Finally, manual occupations are
low-skill services occupations.

13In the model, increases in Ae and As result in a decline in the price of equipment and software,
whereas changes in Ne and Ns do not alter the price of capital. Indeed, the price of equipment
decreases more quickly than that of software, and the TFP of equipment-producing industries
increases faster than that of software. In contrast, software development expenditures rise more
quickly than other types of R&D.
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Taking Ai’s as exogenous, we do not answer why the production of equip-

ment has been more productive since 1980 to begin with. The increase in the

productivity of equipment production mostly reflects the rise of the speed of

computing processors (i.e. Moore’s Law), and we take Moore’s Law as given.

We then ask how this initial innovation affects the occupational structure and the

following direction of technical change, represented by increasing varieties of

equipment or software (Ni’s).

The changes in Ai’s themselves are task-biased as intensities of equipment

and software are different across occupational groups. However, it does not cap-

ture “all” the routine-biased forces that have happened since 1980. For exam-

ple, increasing offshoring or trade could also contribute to the decline in routine

employment. The exogenous task-specific productivities (Mj’s) reflect compo-

nents of the potential routine-biased forces other than capital-embodied technical

changes. A natural question is how much of the changes in the routine employ-

ment can be captured only through Ai’s quantitatively. We answer this question

in one of the exercises.

Scenarios We perform two main exercises. The first is to investigate the ex-

tent to which the endogenous software innovation channel explains the rise of

software and skill demand reversal in the data. For this exercise, we match the

changes in the employment share of middle-skill occupations with Ai’s and Mj’s

and consider the employment dynamics of high- and low-skill occupations gen-

erated from the models with innovation and that without innovation.

The next exercise aims to understand the extent to which changes in the pro-

ductivity of the equipment- and software-producing sectors only, excluding Mj’s,

account for the shifts in the employment share between occupations. To address

this question, we repeat the simulation with all the other parameters fixed, as-

suming a constant Mj for all routine occupations.
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6.1 Calibration

We calibrate most of the parameters according to the 1980 data assuming a steady

state. For the functional forms, we set the productivity function b(h, j) as

b(h, j) =

h̄ if j = 0

h− χj if j ≥ 1

and the skill distributionM(h) as

M(h) = 1− h−a.

Share parameters The weight parameters in the final production (γj’s) are taken

from the employment share by occupation in 1980. The χj’s and a are determined

to match the payroll share across occupational groups in 1980. Between-factor in-

tensities by task (αh, αe, αs) are matched to equipment and software investment

by occupational group obtained in section 2.4, and labor share in 1980. For the

benchmark analysis, we map the equipment in the model to industrial equipment

in the data because it has the closest relation with the routineness of occupations

(figure 2.4).

The elasticity of substitution between tasks (εεε) We set ε to minimize the root

mean squared error of the changes in payroll share between 1980 and 2010 by

occupation. That is, we repeat the calibration procedure to minimize (21) with

varying ε, where ωτ is the payroll share of occupational group j.

[
J

∑
j=1

[
(wm

j,2010 − wm
j,1980)− (wd

j,2010 − wd
j,1980)

]2
/J

] 1
2

(21)

Intuitively, occupations are complementary when changes in quantity (em-

ployment share) and changes in the relative price (relative wage) move in the

same direction, which is actually the case as depicted in figure 2.3 and 6.1. The

resulting parameter value is 0.302, confirming the complementarity.
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Fig. 6.1: Log of relative wage

The elasticity of substitution between labor and capital For σe and σs, we

match linear trends of the aggregate labor share and labor share only with equip-

ment capital14 Note that the labor share with only equipment capital in a given

task τ is given by LS−s =
wL

wL+pe Ẽ = 1/
[
1 +

(
αe
αh

)σe (
νe AeNϕe

e ω
)σe−1

]
, which does not

depend on σs.

The fact that the aggregate labor share and labor share with equipment capi-

tal alone show different trends – the former downward and the latter upward –

makes this strategy even more useful (figure 6.4a).

The markups We estimate the markup-related parameters νe and νs using the

Industry Account and Fixed Asset Table from BEA, following Domowitz et al.

(1988). Specifically, we estimate

∆ log qit − αLit∆ log lit − αmit∆ log mit = ci + b∆ log qit + εit,

where q is gross output/capital, l is employment/capital, m is intermediate in-

put/capital, and αLit and αMit are the labor and intermediate shares, respectively.

The estimation results are presented in table 6.1.

14 We compute the labor share with equipment capital only following Koh et al. (2016). Specif-
ically, a standard asset pricing formula gives Ri = (1 + r)qi − q′i(1− δi), where Ri is the gross
return on capital type i, qi is the relative price of capital type i, δi is a depreciation rate of capital
type i, and r is the net rate of return. Assuming the CRS production technology (where one minus
the labor share is equal to ∑i RiKi/Y), we impute the gross rate of return on equipment, Re. The
labor share with equipment capital only can be computed by CE/(CE + ReKe), where CE is the
compensation of employees.
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Tab. 6.1: Estimation results: markup

Equipment1) Software2)

b .228 .473
(.000) (.113)

N 333 37
Note: 1) Industries 331, 332, 333, 334, 335, 3361MV, 3364TO, 337,
and 339. 2) Industry 511. 3) p-values in parentheses.

Changes in AiAiAi’s and MjMjMj’s We assume the economy was in a steady state in 1980

and compute a new steady state corresponding to the exogenous changes (Ae,

As, Mj’s). For 1980, we set Ai = Mj = 1. The Ai’s are set to equal the TFPs of

the equipment- and software-production sectors, computed in section 2.1. For

routine occupations (j = 2, 3, 4, 5, 7, 815), we vary Mj’s to fit the employment dy-

namics of routine occupations in the calibration procedure. Again, we compare

a scenario allowing for an endogenous response of innovators (with changing Ne

and Ns) with a scenario without endogenous innovation (with fixed Ne and Ns).

To make the two scenarios compatible, we recalibrate Mj’s to match the employ-

ment dynamics of routine occupations in both scenarios. Both scenarios therefore

produce different dynamics of cognitive and manual occupations only, which are

never targeted in the calibration procedure. The exogenous productivities are

shown in table 6.2.

Tables 6.2, 6.3, and 6.4 summarize all the calibration results. A detailed de-

scription of the calibration procedure is provided in appendix D.

6.2 Simulation Results

The Pattern of Occupational Employment Figure 6.2 shows the decadal pat-

tern from 1980 to 2010. The deviation from the initial trend in cognitive occupa-

tion in the model captures 75% of the actual deviation in the data (figure 6.2a),

and the deviation from the initial trend in manual employment in the model is

70% of that in the data (figure 6.2b). The model captures not only the magni-

15These are administrative, machine operation, transportation, sales, mechanical, and produc-
tion occupations.
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Tab. 6.2: Exogenous productivities

1980 1990 2000 2010 Obtained from

Ae, TFP of equipment production 1.00 1.42 2.45 3.80 Data
As, TFP of software production 1.00 0.68 0.75 1.13 Data

Mj’s with endogenous Ni’s
Administrative (j=2) 1.00 1.21 1.32 0.92 Routine
Machine operators (j=3) 1.00 1.33 1.58 2.51 employment
Transportation (j=4) 1.00 1.10 1.13 1.15 dynamics
Sales (j=5) 1.00 0.92 1.06 0.84 (with
Mechanics (j=7) 1.00 0.94 0.76 0.84 varying Ni’s)
Production (j=8) 1.00 1.49 1.30 1.87

Mj’s with fixed Ni’s
Administrative (j=2) 1.00 1.25 1.53 1.78 Routine
Machine operators (j=3) 1.00 1.34 1.59 2.15 employment
Transportation (j=4) 1.00 1.11 1.13 0.98 dynamics
Sales (j=5) 1.00 0.94 1.16 1.25 (with
Mechanics (j=7) 1.00 0.95 0.77 0.75 fixed Ni’s)
Production (j=8) 1.00 1.51 1.31 1.73

Tab. 6.3: Parameters by occupation

αe αs αh γ χ

Low-skilled services (j=1) 0.185 0.007 0.808 0.004

Administrative (j=2) 0.062 0.152 0.786 0.741 0.000
Machine operators (j=3) 0.639 0.013 0.348 0.069 0.002
Transportation (j=4) 0.545 0.012 0.443 0.030 0.027
Sales (j=5) 0.083 0.012 0.905 0.002 0.029
Technicians (j=6) 0.262 0.014 0.724 0.002 0.071
Mechanics (j=7) 0.691 0.015 0.294 0.129 0.071
Production (j=8) 0.523 0.016 0.461 0.018 0.096

Professionals (j=9) 0.132 0.008 0.860 0.003 0.097
Management (j=10) 0.019 0.008 0.973 0.002 0.097

Target Equipment, software, and labor share Employment Payroll

tude but also the timing of the changes in the trends, as it produces much larger

changes during 2000-2010 than during the first two decades. Without endoge-

nous innovation, the simulation generates almost no variation in the trends of

high- and low-skill employment.

34



Tab. 6.4: Remaining parameters

Value Obtained from

σs 1.425 Labor share with and without software in 2010
σe 0.981

νe 0.772 Estimation (table 6.1)
νs 0.527

ε 0.302 Changes in average wage by occupation

The Rise of Software The ratio of software investment to industrial equipment

investment increases from 0.16 to 1.7 in the data, an increase of more than tenfold.

Since we match the initial level of relative investment 0.16 exactly by calibration,

we compare the level of the ratio in 2010 to determine how well the model ex-

plains the rise of software. The full model with innovation explains 63% of the

increase in software investment relative to that in equipment (figure 6.3a). If we

remove the endogenous innovation channel (i.e., no changes in Ns and Ne), the

model generates only 19% of the change in the ratio of software to equipment

(green line).

Figure 6.3b shows the ratio of software variety to equipment variety (Ns/Ne),

measured by cumulative R&D expenditures. Both the data and model show an

increasing pattern, with the model explaining 89% of that in the data.

The Decline of Labor Share We use the labor share trend as a target variable

to calibrate the elasticity of substitution (σe and σs); therefore, it is not surprising

that the labor share in the model exactly matches the labor share trend in the

1980 1990 2000 2010
0.25

0.3

0.35

Data
Innovation
No innovation

(a) Cognitive employment share
1980 1990 2000 2010

0.1

0.15

0.2

Data
Innovation
No innovation

(b) Manual employment share

Fig. 6.2: Simulation results – employment shares by occupation
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Fig. 6.3: Simulation results – investment and innovation (1980=1)

data. What is interesting is that the simulation without endogenous software

innovation produces an almost flat labor share (figure 6.4b).

This result occurs because the elasticity of substitution between equipment

and labor (σe) is close to one; hence, exogenous variation – mostly equipment re-

lated – does not generate a declining labor share. Therefore, the declining labor
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Fig. 6.4: Labor share and software
Note: 1) The labor share only with equipment capital is constructed following Koh
et al. (2016). The solid lines are HP trend with smoothing parameter 100. They are
normalized to 0 in 1980. 2) Industry 514 (with changes in labor share greater than 1
in both periods) has been excluded from this figure.
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Fig. 6.5: Simulation results: with constant Mj’s

share in our model is mostly a result of endogenously increasing software invest-

ment. We highlight a negative correlation between software investment and the

labor share not only across time (figure 6.4a) but also across industries, especially

since 2000 (figures 6.4c and 6.4d).

6.2.1 Changes in AiAiAi’s only with constant MjMjMj’s

Now we investigate how much of the observed changes in the sectoral produc-

tivities alone explain the variation in the share of employment by occupation.

Overall, the changes in Ai’s explain 80%, 77%, and 71% of the changes in cog-

nitive, routine and manual employment, respectively (figure 6.5). Two features

are worth noting.

First, all ten occupational groups move in the same direction as the data (fig-

ure 6.5a), meaning that the differential growth of sectoral productivities – to-

gether with differences in the use of capital – captures the job polarization quite

well. The analysis suggests that differential productivity growth on the sector

level could be an underlying source of routine-biased technological change.

Second, the decadal pattern of changes in occupational employment is similar

to that of the data, even without additional task-specific technical change (figure

6.5b and 6.5c). Moreover, changes in TFP generate 77% of the decline in routine

occupations. We conclude that the evolution of the productivities embodied in

equipment and software has been crucial in generating a pattern that is consistent

with the data.
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7 Conclusion

We provided a model with heterogenous tasks and two types of capital whose

varieties are determined endogenously. We showed both analytically and quan-

titatively that the mechanism in the model is important for understanding the

impact of capital-augmented technical change on the occupational structure.

An important implication is that two types of capital – software and equipment–

measured in National Accounts provide a good proxy for recent technological

changes. Understanding the impact of a technical change on the economy has

always been an important topic, but one of the main difficulties is that technolog-

ical change is not easy to measure, especially in aggregate analyses. This paper

shows that the investigation of different types of capital can be a meaningful pro-

cess to capture recent technological changes.

Our paper also implies that a technological change affecting a small group

of occupations leads to other types of innovation, eventually affecting a broader

set of occupations. Hence, the relation between occupational structure and tech-

nical change is bi-directional. Importantly, the interaction can explain both the

decline in routine jobs (from 1980 to recently) and the stagnation of the growth of

cognitive jobs with a greater increase in manual jobs since 2000s.

Our model has many useful extensions that can be implemented easily. For

example, further decomposition of equipment capital into subcategories would

be helpful for understanding more detailed changes in the occupational struc-

ture through technological changes embodied in capital. Further, integrating a

multi-sector structure would provide interesting implications with respect to the

relation between polarization and structural changes and the evolution of task-

specific and sector-specific productivity, as in Aum et al. (2018).

Though not as straightforward, the analysis herein could also lead to many

interesting future research topics. For example, by using firm-level software and

equipment investment data, we could generate interesting implications regard-

ing the impact of technological change on firm-level heterogeneity and occupation-

level heterogeneity. Many countries are attempting to broaden the types of capi-

tal measured in National Accounts, and a multi-country extension would also be
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meaningful, enabling the analysis of trade or offshoring as well as technological

changes. We have also experienced changes in the skill composition of workers

in recent decades. Analyzing the upskilling or deskilling of certain tasks with the

use of capital could also be an interesting topic to explore.
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Appendices

A Use of Equipment and Software by Occupation

The data on capital use by occupation are constructed by combining the BEA NIPA and O*NET

Tools and Technology Database. In NIPA table 5.5, the investment in non-residential equipment

is categorized into 25 types. In UNSPSC, the classification system used in the O*NET Tools and

Technology database, there are 4,300 commodities in 825 classes, in 173 families, and in 36 seg-

ments.

To construct a mapping between the two databases, we first assign one of the NIPA investment

types to the relevant segment in UNSPSC. Often, it is apparent that a segment includes several

types of equipment investment in NIPA. In this case, we use the family categories in the assign-

ment procedure. Again, if a family apparently includes several types in NIPA, we use classes.

Through this procedure, we could make a rough concordance between a subset of UNSPSC and

the types of equipment investment in NIPA. The constructed concordance is shown in table A1.

Next, we assume that two tools have the same price if they are classified in the same category.

For example, the “metal cutting machines” category in UNSPSC is assigned to the “metalworking

machinery” NIPA investment type. The value of using the metal cutting machines is then the

amount of investment in metalworking machinery divided by total use of all the commodities

in the metalworking machinery category, where the total use of all the tools in metalworking

machinery is defined as sum of a number of total employment of each occupation times a number

of UNSPSC commodities assigned to the metalworking machinery that each occupation uses.

The method is assuming that the number of tools above well represent the value of the tools

only within the NIPA investment category. Across the NIPA investment categories, each number

of tools used would be given a different weight, according to the average amount of investment

given to each tool. The procedure may make a big difference from average number of tools if a

category with many commodities had small values compared to a category with few commodities.

However, as more differentiated categories are usually advanced (and, hence, have expensive

items), we expect not much of a difference from the adjustment.

B Discrete Approximation of the Model

This section discusses equilibrium conditions with discrete approximation of the model. For the

approximation, assumption 1 and 4 are replaced by assumption 5 and 6 in section 3 and 4.

The task production is given by equation (19) with tasks discretized into j = 0, 1, · · · , J. Now,

the tasks are discrete, so workers are sorted into each task according to cutoff level of human

1



Tab. A1: Concordance between NIPA equipment investment types and UNSPSC

NIPA UNSPSC

Line Title Code Title

3 Information processing equipment
4 Computers and peripheral

equipment
43210000 Computer Equipment and Accessories

5 Communication equipment 43190000, 45110000 Communications Devices and Accessories, Audio and visual pre-
sentation and composing equipment

6 Medical equipment and in-
struments

42000000 Medical Equipment and Accessories and Supplies

9 Non-medical instruments 41000000 Laboratory and Measuring and Observing and Testing Equipment
10 Photocopy and related

equipment
45100000, 45120000 Printing and publishing equipment, Photographic or filming or

video equipment
11 Office and accounting equip-

ment
44100000, 31240000 Office machines and their supplies and accessories, Industrial op-

tics

12 Industrial equipment
13 Fabricated metal products 27000000, 31150000,

31160000, 31170000,
40140000, 40170000

Tools and General Machinery, Rope and chain and cable and wire
and strap, Hardware, Bearings and bushings and wheels and gears,
Fluid and gas distribution, Pipe piping and pipe fittings

14 Engines and turbines 26101500, 26101700 Engines, Engine components and accessories
17 Metalworking machinery 23240000, 23250000,

23260000, 23270000,
23280000

Metal cutting machinery and accessories, Metal forming machin-
ery and accessories, Rapid prototyping machinery and accessories,
Welding and soldering and brazing machinery and accessories and
supplies, Metal treatment machinery

18 + 19 Special industry machinery,
n.e.c. + General indus-
trial, including materials
handling, equipment

23100000, 23110000,
23120000, 23130000,
23140000, 23150000,
23160000, 23180000,
23190000, 23200000,
23210000, 23220000,
23230000, 23290000,
24100000, 24110000,
31140000, 40000000

Raw materials processing machinery, Petroleum processing ma-
chinery, Textile and fabric machinery and accessories, Lapidary
machinery and equipment, Leatherworking repairing machinery
and equipment, Industrial process machinery and equipment and
supplies, Foundry machines and equipment and supplies, Indus-
trial food and beverage equipment, Mixers and their parts and ac-
cessories, Mass transfer equipment, Electronic manufacturing ma-
chinery and equipment and accessories, Chicken processing ma-
chinery and equipment, Sawmilling and lumber processing ma-
chinery and equipment, Industrial machine tools, Material han-
dling machinery and equipment, Containers and storage, Mold-
ings, Distribution and Conditioning Systems and Equipment and
Components

20 + 41 Electrical transmission, dis-
tribution, and industrial ap-
paratus + Electrical equip-
ment, n.e.c.

26101100, 26101200,
26101300, 26110000,
26120000, 26130000,
26140000, 39000000

Electric alternating current AC motors, Electric direct current DC
motors, Non-electric motors, Batteries and generators and kinetic
power transmission, Electrical wire and cable and harness, Power
generation, Atomic and nuclear energy machinery and equipment,
Electrical Systems and Lighting and Components and Accessories
and Supplies

21 Transportation equipment
22 + 25 Trucks, buses, and truck trail-

ers + Autos
25100000 Motor vehicles

26 Aircraft 25130000 Aircraft
27 Ships and boats 25110000 Marine transport
28 Railroad equipment 25120000 Railway and tramway machinery and equipment

29 Other equipment
30 Furniture and fixtures 56000000 Furniture and Furnishings
33 Agricultural machinery 21000000 Farming and Fishing and Forestry and Wildlife Machinery and Ac-

cessories
36 Construction machinery 22000000 Building and Construction Machinery and Accessories
39 Mining and oilfield machin-

ery
20000000 Mining and Well Drilling Machinery and Accessories

40 Service industry machinery 48000000 Service Industry Machinery and Equipment and Supplies

2



capital ĥj. More precisely, we have a sequence of human capital {ĥj}j=0,··· ,J+1 such that a worker

with h ∈ [ĥj, ĥj+1) is sorted into task j with ĥ0 = h and ĥJ+1 = h̄.

A worker with exactly the threshold level of human capital should be indifferent between tasks

so that

ωjb(ĥj, j) = ωj−1b(ĥj, j− 1), for all j, for , j = 1, · · · , J (B.1)

replacing the original equilibrium condition (9).

The task production solves

max pjTj −
∫

h
w(h)l(h)dh−

∫ Ne

k=0
pe(k)e(k)dk−

∫ Ns

k=0
ps(k)s(k)dk,

which gives the FOCs,

w(h) = ωjb(h, j) = pjT
1
σs
j H

1
σe−

1
σs

j

(∫ ĥj+1

ĥj

b(h, j)µ(h)dh

)− 1
σe

b(h, j),

1
Aeνe

= pjT
1
σs
j H

1
σe−

1
σs

j (Ne)
σe−1
σeνe −1e

− 1
σe

j ,

1
Asνs

= pjT
1
σs
j (Ns)

σs−1
σsνs −1s

− 1
σs

j ,

using the fact that pe = 1/(Aeνe), ps = 1/(Asνs), ej(k) = ej, and sj(k) = sj in equilibrium, and

Hj :=
[

αh,j(
∫ ĥj+1

ĥj
b(h, j)µ(h)dh)

σe−1
σe + αe,j(

∫ Ne
k=0 e(k)νe dk)

σe−1
σeνe

] σe
σe−1

.

Combining the FOCs, we obtain

pj =

[(
ασe

h,jω
1−σe
j + ασe

e,j

(
νe AeNϕe

e
)σe−1

) 1−σs
1−σe

+ ασs
s,j

(
νs AsNϕs

s
)σs−1

] 1
1−σs

, for j = 0, · · · , J (B.2)

which replaces equation (11).

The demand for each task is from

max Y−∑
j

pjTj,

which gives

pj =

(
γjY
Tj

) 1
ε

.
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Combining this with FOCs, we obtain

pε−σs
j =

γjα
σs
h,j

(
ασe

h,jω
1−σe
j + ασe

e,j

(
νe AeNϕe

e
)σe−1

) σe−σs
1−σe Y

ωσe
j

∫ ĥj+1

ĥj
b(h, j)µ(h)dh

, for j = 0, · · · , J, (B.3)

replacing equation (10).

Now, the equilibrium thresholds ĥj’s, wage rate ωj’s and prices pj’s are obtained by solving

equation (B.1) to (B.3), which are 3J + 1 equations with the same number of unknowns.

C Proof

Proof of lemma 2 Since assignment function ĥ(τ) is strictly increasing, its inverse τ̂(h) is well defined.

From the demand for tasks, equation (7), we know that there will be a strictly positive task output T(τ) > 0

(and, hence, l(h, τ̂(h)) > 0) for all τ ∈ [0, τ̄]. The equation (8) and lemma 1 then implies

w(h) = ω(τ̂(h))b(h, τ̂(h)) ≥ ω(τ̂(h′))b(h, τ̂(h′)), and

w(h′) = ω(τ̂(h′))b(h′, τ̂(h′)) ≥ ω(τ̂(h))b(h′, τ̂(h)).

Combining these two inequalities, we have

b(h, τ̂(h′))
b(h, τ̂(h))

≤ ω(τ̂(h))
ω(τ̂(h′))

≤ b(h′, τ̂(h′))
b(h′, τ̂(h))

Let τ = τ̂(h) and τ′ = τ̂(h′). Since τ̂ has an inverse function ĥ, the above inequality is equivalent to

b(ĥ(τ), τ′)

b(ĥ(τ), τ)
≤ ω(τ)

ω(τ′)
≤ b(ĥ(τ′), τ′)

b(ĥ(τ′), τ)

By taking the log on both sides and dividing by τ′ − τ,

log b(ĥ(τ), τ′)− log b(ĥ(τ), τ)

τ′ − τ
≤ −(log ω(τ′)− log ω(τ))

τ′ − τ
≤ log b(ĥ(τ′), τ′)− log b(ĥ(τ′), τ)

τ′ − τ

As τ′ − τ → 0, we have

d log ω(τ)

dτ
= −∂ log b(ĥ(τ), τ)

∂τ
,

which is the equation (9).
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Now, consider the task production. For notational convenience, we introduce

H(h, τ) =

[
αh(τ)(b(h, τ)l(h))

σe−1
σe + αe(τ)

(∫ Ne

0
e(k, τ)νe dk

) σe−1
σeνe

] σe
σe−1

From

max p(τ)T(τ)−
∫

h
w(h)l(h, τ)dh−

∫ Ns

0
ps(k)s(k, τ)dk−

∫ Ne

0
pe(k)e(k, τ)dk,

we have the following first-order conditions:

w(h) ≥ αh(τ)p(τ)T(τ)
1
σs H(h, τ)

σs−σe
σeσs l(h)−

1
σe b(h, τ), (C.1)

pe(k) = αe(τ)p(τ)T(τ)
1
σs H(h, τ)

σs−σe
σeσs

(∫ Ne

0
e(k, τ)νe

) σe−1−νeσe
νeσe

e(k, τ)νe−1, (C.2)

ps(k) = αs(τ)p(τ)T(τ)
1
σs

∫ Ns

0
s(k, τ)νs dk

σs−1−νsσs
νsσs

s(k, τ)νs−1, (C.3)

In the equipment- and software-producing sector, we solve

max pe(k)e(k)− e(k)/Ae, max ps(k)s(k)− s(k)/As

subject to (C.2) and (C.3). The solution gives

pe = 1/(νe Ae), ps = 1/(νs As) for all k. (C.4)

Substituting (C.4) into the FOCs, we obtain

p(τ) =
[{

αh(τ)
σe ω(τ)1−σe + αe(τ)

σe
(
νe AeNϕe

e
)σe−1

} 1−σs
1−σe

+ αs(τ)
σs
(
νs AsNϕs

s
)σs−1

] 1
1−σs

,

by combining the FOCs, which is the equation (11).

Again, from equations (C.1) to (C.3), the task production T(τ) can be expressed by

T(τ) = p(τ)−σs ω(τ)σe αh(τ)
−σe
(

αh(τ)
σe ω(τ)1−σe + αe(τ)

σe
(
νe AeNϕe

e
)σe−1

) σs−σe
1−σe

∫
h

b(h, τ)l(h, τ)dh

(C.5)

From the labor market clearing condition and lemma 1, we have

l(h, τ) = µ(h)δ[τ − τ̂(h)],
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where δ is a Dirac delta function. Then, we have∫
h

b(h, τ)l(h, τ)dh =
∫

τ′
b(ĥ(τ′), τ)µ(ĥ(τ))δ[τ − τ′]ĥ′(τ′)dτ′ = b(ĥ(τ), τ)µ(ĥ(τ))ĥ′(τ).

Combining this with equation (7) and (C.5), we have

ĥ′(τ) =
γ(τ)p(τ)σs−εαh(τ)

σs

(
αh(τ)

σe ω(τ)1−σe + αe(τ)σe
(
νe AeNϕe

e
)σe−1

) σe−σs
1−σe Y

ω(τ)σe b(ĥ(τ), τ)µ(ĥ(τ))
,

which is the equation (10).

Proof of lemma 3 In steady state, if it exists, r = πs/ηs = πe/ηe = ρ from the Euler equation (17).

Then Ẋ/X = 0 for X = C, E, S, Ne, and Ns follow from usual argument. What we need to show is that

there exist Ns and Ne that satisfy πs/ηs = πe/ηe = ρ.

We begin with the following lemma.

Lemma 4 Fix p(τ) and ĥ(τ). There exists a pair (νs, νe) ∈ (0, 1) × (0, 1) such that s(τ) is strictly

decreasing in Ns and e(τ) is strictly decreasing in Ne.

Proof Combining equation (C.1) and (C.3) (FOCs), we have

s(τ) = N−1
s Nϕs(σs−1)

s (νs As)
σs αs(τ)

σs αh(τ)
− σe

1−σe b(ĥ(τ), τ)µ(ĥ(τ))ĥ′(τ)

×
[(

p(τ)1−σs − αs(τ)
σs
(
νs AsNϕs

s
)σs−1

) 1−σe
1−σs − αe(τ)

σe (νe Ae(Nsnes)
ϕe)σe−1

] σe
1−σe

×
(

p(τ)1−σs − αs(τ)
σs
(
νs AsNϕs

s
)σs−1

) σs−σe
1−σs , (C.6)

and

e(τ) = N−1
e Nϕe(σe−1)

e (νe Ae)
σe αe(τ)

σe αh(τ)
− σe

1−σe b(ĥ(τ), τ)µ(ĥ(τ))ĥ′(τ)

×
[(

p(τ)1−σs − αs(τ)
σs (νs As(Ne/nes)

ϕs)σs−1
) 1−σe

1−σs − αe(τ)
σe
(
νe AeNϕe

e
)σe−1

] σe
1−σe

, (C.7)

where nes := Ne/Ns.

From equation (C.6) and (C.7), we can express

∂ log s(τ)
∂Ns

= − 1
Ns

+ s1(τ; ϕs), (C.8)

∂ log e(τ)
∂Ne

= − 1
Ne

+ e1(τ; ϕe), (C.9)
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and it is straightforward to check that limϕs↓0 |s1(τ; ϕs)| = 0, limϕe↓0 |e1(τ; ϕe)| = 0, and ∂s1/∂ϕs >

0, ∂e1/∂ϕe > 0. This expression implies that there should be 0 < νs < 1 and 0 < νe < 1, which

make s(τ) strictly decreasing in Ns and e(τ) strictly decreasing in Ne.

Lemma 5 Fix p(τ) and ĥ(τ). With νe and νs close to one, we have the following:

lim
Ns→0

s(τ) = ∞, lim
Ne→0

e(τ) = ∞, lim
Ns→∞

s(τ) = 0, lim
Ne→∞

e(τ) = 0.

Proof By substituting νe = 1 and νs = 1 (and, hence, ϕe = 1−νe
νe

= 0 and ϕs = 1−νs
νs

= 0) into

equation (C.6) and (C.7), we have

s(τ) = N−1
s (νs As)

σs αs(τ)
σs αh(τ)

− σe
1−σe b(ĥ(τ), τ)µ(ĥ(τ))ĥ′(τ)

×
[(

p(τ)1−σs − αs(τ)
σs (νs As)

σs−1
) 1−σe

1−σs − αe(τ)
σe (νe Ae)

σe−1
] σe

1−σe

×
(

p(τ)1−σs − αs(τ)
σs (νs As)

σs−1
) σs−σe

1−σs , (C.10)

and

e(τ) = N−1
e (νe Ae)

σe αe(τ)
σe αh(τ)

− σe
1−σe b(ĥ(τ), τ)µ(ĥ(τ))ĥ′(τ)

×
[(

p(τ)1−σs − αs(τ)
σs (νs As)

σs−1
) 1−σe

.
1− σs − αe(τ)

σe (νe Ae)
1−σe

] σe
1−σe

(C.11)

The result is straightforward from equations (C.10) and (C.11).

Since πe and πs are proportional to the integration of s(τ) and e(τ), lemma 4 and 5 imply the existence

of a unique steady state under some large enough νe and νs, fixing the static equilibrium.

Note that both ĥ and µ(h)dh are bounded above by assumption and boundary conditions, and p(τ)

is also bounded as
∫

τ γ(τ)p(τ)1−εdτ = 1. Hence, the existence follows when πe and πs are continuous

in Ne and Ns, even when considering changes in static equilibrium. Recall that p(τ) and ĥ(τ) can be

obtained from the system of differential equations (9) to (11). Since all functions in equation (9) to (11) are

differentiable, πe and πs are also continuous in Ne and Ns, and the desired result follows.

Intuitively, large νe and νs mean small returns to introducing additional variety, thus meaning a de-

creasing rate of return. To see this intuition more clearly, recall that the task production function is given
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by

T(τ) =

[{
αh(τ)

(
b(ĥ(τ), τ)µ(ĥ(τ))ĥ′(τ)

) σe−1
σe

+ αe(τ)N
σe−1
σeνe

e e(τ)
σe−1

σe

} σe(σs−1)
(σe−1)σs

+αs(τ)N
σs−1
σsνs

s s(τ)
σs−1

σs

] σs
σs−1

, (C.12)

as s(k, τ) = s(τ) and e(k, τ) = e(τ) in equilibrium. The production is homogeneous of degree one in

labor, Ne and Ns when νe → 1 and νs → 1. Since labor is a fixed component, the production features strict

concavity along Ne and Ns, meaning decreasing returns to scale in terms of total varieties.

The second part of lemma (3) is when σe = σs = 1. In this case,

p(τ)T(τ) =
ω(τ)b(ĥ(τ), τ)µ(ĥ(τ))ĥ′(τ)

αh(τ)
, (C.13)

s(τ) =
νs Asαs(τ)p(τ)T(τ)

Ns
, (C.14)

e(τ) =
νe Aeαe(τ)p(τ)T(τ)

Ne
. (C.15)

Combining the FOCs, T(τ) satisfies

p(τ)T(τ) = p(τ)
1

αh(τ) κ(τ)NΨes(τ)
s

(
Ne

Ns

)Ψe(τ)

B(τ), (C.16)

where κ(τ) := (αs(τ)νs As)
αs(τ)
αh(τ) (αe(τ)νe Ae)

αe(τ)
αh(τ) , Ψes(τ) := 1−νs

νs

αs(τ)
αh(τ)

+ 1−νe
νe

αe(τ)
αh(τ)

, Ψe(τ) := 1−νe
νe

αe(τ)
αh(τ)

,

and B(τ) := b(ĥ(τ), τ)µ(ĥ(τ))ĥ′(τ) are introduced to simplify the notation.

From equation (C.14) and (C.15), it is apparent that s(τ) and e(τ) are decreasing in Ns and Ne,

respectively, when Ψes(τ) < 1, which is a condition given in lemma 3.

Proof of proposition 1 (job polarization) Substituting p(τ) out from equation (9) to (11), we have

ĥ′(τ) =
γ(τ)αh(τ)

1−αh(τ)(1−ε)Y

b(ĥ(τ), τ)µ(ĥ(τ))ω(τ)1−αh(τ)(1−ε)
×

[(
αs(τ)νs AsN(1−νs)/νs

s

)αs(τ) (
αe(τ)νe AeN(1−νe)/νe

e

)αe(τ)
]ε−1

(C.17)

d log ω(τ)

dτ
= −∂ log b(ĥ(τ), τ)

∂τ
(C.18)

First, we show that ĥ1 and ĥ2 must cross at least once. Suppose there is no crossing. Since ĥ1(0) =
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ĥ2(0) and ĥ1(τ̄) = ĥ2(τ̄), we have

(
ω1(0)
ω2(0)

)1−αh(0)(1−ε)

=
ĥ′2(0)
ĥ′1(0)

(
Ae2

Ae1

)(1−ε)αe(0)

, (C.19)(
ω1(τ̄)

ω2(τ̄)

)1−αh(τ̄)(1−ε)

=
ĥ′2(τ̄)
ĥ′1(τ̄)

(
Ae2

Ae1

)(1−ε)αe(τ̄)

, (C.20)

from equation (C.17). Combining

(
ω1(τ̄)/ω1(0)
ω2(τ̄)/ω2(0)

)1−αh(0)(1−ε) (ω1(τ̄)

ω2(τ̄)

)(αh(0)−αh(τ̄))(1−ε)

=
ĥ′2(τ̄)/ĥ′2(0)
ĥ′1(τ̄)/ĥ1′(0)

(C.21)

Since ĥ(τ) is strictly monotone and continuous, with no crossing on entire (0, τ̄), we have to have

either (i) ĥ′2(τ̄)/ĥ′2(0) < ĥ′1(τ̄)/ĥ′1(0) and ĥ1(τ) < ĥ2(τ) for τ ∈ (0, τ̄), or (ii) ĥ′2(τ̄)/ĥ′2(0) >

ĥ′1(τ̄)/ĥ′1(0) and ĥ1(τ) > ĥ2(τ) for τ ∈ (0, τ̄). However, from equation (C.18) and log supermodu-

larity of b(h, τ), we have ω1(τ̄)/ω1(0) > ω2(τ̄)/ω2(0) with ĥ1(τ) < ĥ2(τ). With small enough αs(τ̄),

(ω1(τ̄)/ω2(τ̄))(αh(0)−αh(τ̄))(1−ε) approaches one, and hence, equation (C.21) contradicts log supermodu-

larity of b(h, τ).

Second, we show that when ĥ1(τ) and ĥ2(τ) cross at any three points τa < τb < τc, we have

ĥ′1(τa)/ĥ′1(τb) < ĥ′2(τa)/ĥ′2(τb) with ĥ2(τ) > ĥ1(τ) for τ ∈ (τa, τb) and ĥ′1(τc)/ĥ′1(τb) < ĥ′2(τc)/ĥ′2(τb)

with ĥ1(τ) > ĥ2(τ) for τ ∈ (τb, τc).

From equilibrium condition (C.17),

(
ω1(τb)/ω1(τa)

ω2(τb)/ω2(τa)

)1−αh(τa)(1−ε) (ω1(τb)

ω2(τb)

)(αh(τa)−αh(τb))(1−ε)

=
ĥ′2(τb)/ĥ′2(τa)

ĥ′1(τb)/ĥ′1(τa)

(
Ae2

Ae1

)(1−ε)(αe(τb)−αe(τa))

(C.22)(
ω1(τc)/ω1(τb)

ω2(τc)/ω2(τb)

)1−αh(τc)(1−ε) (ω1(τb)

ω2(τb)

)(αh(τb)−αh(τc))(1−ε)

=
ĥ′2(τc)/ĥ′2(τb)

ĥ′1(τc)/ĥ′1(τb)

(
Ae2

Ae1

)(1−ε)(αe(τc)−αe(τb))

(C.23)

With small enough α′h(τ), these equations are approximated to

(
ω1(τb)/ω1(τa)

ω2(τb)/ω2(τa)

)1−αh(τa)(1−ε)

≈ ĥ′2(τb)/ĥ′2(τa)

ĥ′1(τb)/ĥ′1(τa)

(
Ae2

Ae1

)(1−ε)(αe(τb)−αe(τa))

(C.24)(
ω1(τc)/ω1(τb)

ω2(τc)/ω2(τb)

)1−αh(τc)(1−ε)

≈ ĥ′2(τc)/ĥ′2(τb)

ĥ′1(τc)/ĥ′1(τb)

(
Ae2

Ae1

)(1−ε)(αe(τc)−αe(τb))

(C.25)

The only possibility that this can hold at the same time is when αe(τb) > αe(τa) and αe(τb) > αe(τc)

so that the signs of exponent term with respect to (Ae2/Ae1) are different. Recall that ω1(τb)/ω1(τa) <

ω2(τb)/ω2(τa) implies ĥ′2(τb)/ĥ′2(τa) > ĥ′1(τb)/ĥ′1(τa) from equilibrium condition (C.18) and log su-
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permodularity of b(h, τ). Since qe1 > qe2, αe(τb) > αe(τa), and αe(τb) > αe(τc), we must have

ω1(τb)/ω1(τa) > ω2(τb)/ω2(τa) and ω1(τc)/ω1(τb) < ω2(τc)/ω2(τb), which implies ĥ1(τ) < ĥ2(τ)

for τ ∈ (τa, τb) and ĥ1(τ) > ĥ2(τ) for τ ∈ (τb, τc).

The proof in the first part rules out any even number of crossings and no crossing. The second part

implies they have to cross only a single time on τ ∈ (0, τ̄) because they already meet at 0 and τ̄. Then, the

result follows from the second part of the proof.

Proof of proposition 2 (the rise of software) We first show that the production share of the middle-skill

task (task 1) falls and that of a high-skill task (task 2) rises in response to the decline in the price of equipment

in a discretized model as well. To be specific, we prove the following lemma first.

Lemma 6 Fix Ne and Ns. Consider a decline in the price of equipment; d log Ae > 0 and suppose ε < 1

and assumption 2, 5, and 6. Then, we have d log p1 < 0 and d log p2 > 0.

Proof From the equilibrium conditions (B.1) to (B.3),

2

∑
j=0

γj p1−ε
j = 1

pj =

(
ωj

αh,j

)αh,j
(

1
νe Aeαe,j

)αe,j
(

1
νs Asαs,j

)αs,j

N
−ϕeαe,j
e N

−ϕsαs,j
s , for j = 0, 1, 2

wj−1b(ĥj, j− 1) = wjb(ĥj, j), for j = 1, 2

ωj−1
∫ ĥj

ĥj−1
b(h, j− 1)µ(h)dh

ωj
∫ ĥj+1

ĥj
b(h, j)µ(h)dh

=
αh,j−1γj−1

αh,jγj

(
pj−1

pj

)1−ε

, for j = 1, 2,

with σs = σe = 1.

Let ∆x = d log(x). Then, by differentiating the above and using assumption 5,

∆pj = αh,j∆ωj − αe,j∆Ae (C.26)

∆ωj−1 = ∆ωj + ∆b(ĥj, j)− ∆b(ĥj, j− 1) (C.27)

∆ωj−1 − ∆ωj = (1− ε)(∆pj−1 − ∆pj) (C.28)
2

∑
j=0

γj p1−ε
j ∆pj = 0 (C.29)

Eliminating ωj’s,(
1

αh,0
− (1− ε)

)
∆p0 =

(
1

αh,1
− (1− ε)

)
∆p1 +

(
αe,1

αh,1
− αe,0

αh,0

)
∆Ae (C.30)(

1
αh,2
− (1− ε)

)
∆p2 =

(
1

αh,1
− (1− ε)

)
∆p1 +

(
αe,1

αh,1
− αe,2

αh,2

)
∆Ae (C.31)
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Since 1/αh,j > (1− ε) for all j’s and αe,1/αh,1 > αe,j/αh,j for j = 0, 2, it is easy to check that ∆p1 < 0

by substituting equation (C.30) and (C.31) into equation (C.29).

Substituting equation (C.30) and (C.31) into equation (C.29), we also have[
γ0 p1−ε

0

( 1
αh,2
− (1− ε)

1
αh,0
− (1− ε)

)
+ γ2 p1−ε

2 + γ1 p1−ε
1

( 1
αh,2
− (1− ε)

1
αh,1
− (1− ε)

)]
∆p2

+γ0 p1−ε
0


(

αe,1
αh,1
− αe,0

αh,0

)
−
(

αe,1
αh,1
− αe,2

αh,2

)
1

αh,0
− (1− ε)

∆Ae

−γ1 p1−ε
1

αe,1
αh,1
− αe,2

αh,2

1
αh,1
− (1− ε)

∆Ae = 0 (C.32)

By assumption 6 and ε < 1, we have[
γ0 p1−ε

0

( 1
αh,2
− (1− ε)

1
αh,0
− (1− ε)

)
+ γ2 p1−ε

2 + γ1 p1−ε
1

( 1
αh,2
− (1− ε)

1
αh,1
− (1− ε)

)]
> 0,

γ0 p1−ε
0


(

αe,1
αh,1
− αe,0

αh,0

)
−
(

αe,1
αh,1
− αe,2

αh,2

)
1

αh,0
− (1− ε)

 = 0,

γ1 p1−ε
1

αe,1
αh,1
− αe,2

αh,2

1
αh,1
− (1− ε)

> 0,

implying ∆p2 > 0 from equation (C.32).

Now, we show that lemma 6 implies a relative increase in software variety in the new steady state. Note

that the profits from providing software and equipment variety are given by

πs = ∑
j

1− ν

νAs
sj and πe = ∑

j

1− ν

νAe
ej.

From the FOC and using (C.4) (pe = 1/(νAe) and ps = 1/(νAs)), demand for equipment and software

for each task are ej = νe Aeαe,j pjTj/Ne and sj = νs Asαs,j pjTj/Ns.
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From lemma 3, we know πe/η = πs/η = ρ in any steady state equilibrium, and hence,

dπe = (1− ν)

[
(1− ε)(αe,0 p−ε

0 dp0 + αe,1 p−ε
1 dp1 + αe,2 p−ε

2 dp2)Y

+(∑
j

αe,j p1−ε
j )dY− 1

Ne
∑

j
αe,j p1−ε

j YdNe

]
= 0

dπs = (1− ν)

[
(1− ε)(αs,0 p−ε

0 dp0 + αs,1 p−ε
1 dp1 + αs,2 p−ε

2 dp2)Y

+(∑
j

αs,j p1−ε
j )dY− 1

Ns
∑

j
αe,j p1−ε

j YdNs

]
= 0

In combination,

(1− ε)[(αe,1 − αs,1)p−ε
1 dp1 + (αe,2 − αs,2)p−ε

2 dp2]

= ∑
j

αe,j p1−ε
j

[
dNe

Ne
− dY

Y

]
−∑

j
αs,j p1−ε

j

[
dNs

Ns
− dY

Y

]
= ∑

j
αs,j p1−ε

j

[
dNe − dNs

Ns
−
(

1− Ne

Ns

)
dY
Y

]
< 0,

where the last equality is from the no arbitrage condition (16) ( Ns
Ne

=
∑j αs,jγj p1−ε

j

∑j αe,jγj p1−ε
j

), and the inequality is from

lemma 6 and assumption 6.

Hence, we have

dNs > dNe + (Ne − Ns)
dY
Y

.

Since a decrease in the price of equipment raises the level of production, we have dY/Y > 0. Hence,

with the condition given in this proposition (Ne ≥ Ns), (Ne − Ns)dY/Y ≥ 0, and therefore, dNs > dNe.

Finally, since Ne ≥ Ns, we have

dNs/Ns > dNe/Ne,

as shown.

Proof of proposition 3 (skill demand reversal) Suppose they cross at least once, which means that we

have at least three points τa < τb < τc such that ĥ1(τa) = ĥ2(τa), ĥ1(τb) = ĥ2(τb), and ĥ1(τc) = ĥ2(τc).
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Then, we have

(
ω1(τb)/ω1(τa)

ω2(τb)/ω2(τa)

)1−αh(τa)(1−ε) (ω1(τb)

ω2(τb)

)(αh(τa)−αh(τb))(1−ε)

=
ĥ′2(τb)/ĥ′2(τa)

ĥ′1(τb)/ĥ′1(τa)

(
Ns2

Ns1

)ϕs(1−ε)(αs(τb)−αs(τa))

(C.33)(
ω1(τc)/ω1(τb)

ω2(τc)/ω2(τb)

)1−αh(τc)(1−ε) (ω1(τb)

ω2(τb)

)(αh(τb)−αh(τc))(1−ε)

=
ĥ′2(τc)/ĥ′2(τb)

ĥ′1(τc)/ĥ′1(τb)

(
Ns2

Ns1

)ϕs(1−ε)(αs(τc)−αs(τb))

(C.34)

where ϕs ≡ (1− νs)/νs.

With a small enough α′h(τ), the above equations can be approximated to

(
ω1(τb)/ω1(τa)

ω2(τb)/ω2(τa)

)1−αh(τa)(1−ε) ĥ′1(τb)/ĥ′1(τa)

ĥ′2(τb)/ĥ′2(τa)
≈
(

Ns2

Ns1

)ϕs(1−ε)(αs(τb)−αs(τa))

(C.35)(
ω1(τc)/ω1(τb)

ω2(τc)/ω2(τb)

)1−αh(τc)(1−ε) ĥ′1(τc)/ĥ′1(τb)

ĥ′2(τc)/ĥ′2(τb)
≈
(

Ns2

Ns1

)ϕs(1−ε)(αs(τc)−αs(τb))

(C.36)

Again, since the matching function is continuous and monotone and b(h, τ) is log supermodular, the

signs of the log of LHS in both equation (C.35) and equation (C.36) should be different. However, since

αs(τ) is strictly increasing, signs of the log of RHS in equation (C.35) and equation (C.36) are the same,

which is contradictory.

Finally, to show ĥ2(τ) < ĥ1(τ) for τ ∈ (0, τ̄), recall that equilibrium condition (C.17) implies

(
ω1(τ̄)/ω1(0)
ω2(τ̄)/ω2(0)

)1−αh(τ̄)(1−ε) ĥ′1(τ̄)/ĥ′1(0)
ĥ′2(τ̄)/ĥ′2(0)

=

((
Ns2

Ns1

)ϕs ω2(0)
ω1(0)

)(1−ε)(αs(τ̄)−αs(0))

(C.37)

Since (1− ε)(αs(τ̄)− αs(0)) > 0 and Ns2 > Ns1, we must have ω1(τ̄)/ω1(0) > ω2(τ̄)/ω2(0), which

implies ĥ2(τ) > ĥ1(τ).

D Calibration Procedure

This section describes the detailed calibration procedure. We normalize exogenous variables Mj’s,

Ae, and As to one in 1980.

1. We begin with ĥj, which correspond to the employment share of occupation j in 1980 and

fix ε, σs and σe arbitrarily.

2. By indifference between tasks at the threshold level of skills, we have

wj

wj−1
=

ĥj − χj−1

ĥj − χj
,
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and thus, wj = w0 ∏
j
k=1(ĥk − χk−1)/(ĥk − χk). Therefore, the payroll share of occupation j

is given by

∏
j
k=1(ĥk − χk−1)/(ĥk − χk)

∫ ĥj

ĥj−1
(h− χj)h−a−1dh

∑j ∏
j
k=1(ĥk − χk−1)/(ĥk − χk)

∫ ĥj

ĥj−1
(h− χj)h−a−1dh

.

We set 8 parameters χj’s and 1 parameter a to minimize the distance between the payroll

share in the data and the model for 9 occupations.

3. Guess αj,e and αj,s. We find γj’s that match with ĥj’s in equilibrium.

4. We iterate over αj,e and αj,s until the aggregate labor share Ej and Sj in the model match with

the aggregate labor share, equipment and software investment by occupation in the data.

5. We solve for Mj’s for routine occupations (j = 2, 3, 4, 5, 7, 8) to match the employment share

of routine occupations in the data. Note that we already have different values of Ae and As

for each period obtained from the data.

6. Iterate over σs and σe so that the labor share with and without the software matches with

the trend-implied level in 2010.

7. Iterate over ε in order to minimize an average distance between changes in the payroll share

by occupation in the model and data.

The procedure gives all the parameters that need to be calibrated. For νe and νs, we use the

estimated value as described in section 6.
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