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Abstract

This paper studies asymmetric responses in consumption where the asymmetries

are endogenously generated by agents’ preferences and incomplete knowledge about

information quality. Agents form expectations about the future based on incom-

plete information which is assumed to be ambiguous, and these future expectations,

distorted by ambiguity, affect spending asymmetrically. With a noisy signal of un-

certain quality, consumption features asymmetric responses: the absolute size of the

responses depends on whether the signal delivers good or bad news. I estimate the

model on U.S. data by maximum likelihood, and the estimates suggest that the am-

biguity can be a potential source to explain asymmetric consumption fluctuations.
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1 Introduction

There is evidence that consumption growth is left-skewed. For example, consumption ex-

penditure growth per capita1 of the U.S. from 1970 to 2016 exhibits left-skewness with a

negative estimate of -0.9014. Van Nieuwerburgh and Veldkamp (2006) suggest that nega-

tive skewness in the distribution of changes represents the large number of small positive

changes (or gradual increases) and the small number of large negative changes (or sudden

decreases).2 One potential reason for a left-skewed consumption growth is that positive

and negative shocks have asymmetric effects on consumption. It can also be explained by

agents reacting symmetrically to asymmetric shocks. While two explanations (or a mix-

ture of them) can easily justify a left-skewed unconditional distribution of consumption

growth, Table 1 shows that consumption growth, for the most countries including the U.S.,

is skewed more to the left than GDP growth. This implies that an asymmetric consumption

response, to a certain degree, can play an important role in explaining observed negatively

skewed consumption growth. In fact, there exists empirical evidence demonstrating this

asymmetry: Bunn, Roux, Reinold, and Surico (2017) show that the size of a decrease in

spending following an unanticipated decrease in a household’s income is larger than that of

an increase in spending following an unanticipated income increase. Similarly, examining

tax-induced income gains and losses, Bracha and Cooper (2014) show that consumption

declines 90 cents per dollar lost to the tax increase, and rises 60 cents per additional tax

refund dollars.3 However, it is not trivial to explain why agents react differently to positive

and negative shocks.4

In this paper, by focusing on agents’ preferences and information structures I attempt

to suggest a possible explanation for the asymmetric effects of (symmetric) exogenous

shocks in a simple forward looking consumption model where agents’ belief formation is

the key ingredient to explain consumption dynamics.5 This follows a view on business

cycles emphasizing the role of anticipating the future. Agents form expectations about

the future based on incomplete information which is assumed to be ambiguous, and these

1Yang (2011) also documents that durable consumption growth in the U.S. is left-skewed.
2Van Nieuwerburgh and Veldkamp (2006) explain growth asymmetry in macro aggregates with learning

about the aggregate technology level.
3In addition, Cover (1992), using the quarterly U.S. data, suggests that while positive money supply

shocks do not have an effect on output, negative ones do; Kandil (2002), using aggregate data of real
output, price, and wage for the United States, provides evidence of the asymmetric effects of aggregate
demand shocks; Hussain and Malik (2016) show that the effects of tax increase and decrease are asymmetric.
Overall, the literature suggests that there is ample evidence of the asymmetric effects of shocks on key
macro variables.

4Imperfect access to credit markets, precautionary saving due to income uncertainty, and loss aversion
of households have been suggested in the literature to generate the asymmetry in consumption response.

5Cao and Nie (2016) provide an explanation of asymmetric responses of the economy to symmetric
exogenous productivity shocks with market incompleteness.
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Table 1: Left-skewed consumption growth

Skewness

Sample Country Consumption GDP Data sources

1980Q1-2017Q1 Canada -0.9949 -0.1449 OECD and Statistics Canada

1991Q1-2016Q4 France -0.3910 0.2465 OECD

1991Q1-2016Q4 Germany -0.6086 -0.1395 OECD

1991Q1-2016Q4 Italy -0.5313 -0.0869 OECD

1994Q1–2017Q1 Japan -2.3449 -0.7311 OECD

1991Q1-2016Q4 United Kingdom -0.7579 -0.6989 Bank of England and OECD

1970Q1–2016Q1 United States -0.9014 -0.1812 BEA and BLS

Notes: Consumption growth is obtained by taking the first difference of log per-capita real consumption expenditure, and
GDP growth is computed by taking the first difference of the logarithm of the ratio of real GDP to employment. The OECD
and the Bank of England’s data are from OECD (2016) and Thomas and Dimsdale (2017), respectively.

future expectations, distorted by ambiguity, affect spending asymmetrically. An interesting

feature of the model is that the possibility of agents responding symmetrically is not entirely

ruled out such that it is possible to test which story (asymmetric or symmetric responses to

symmetric shocks) fits data better statistically in a simple unified framework and provide

a numerical characterization of the conditional dynamics of consumption.

A common practice of modeling agents’ expectations about future outcomes in macroe-

conomic analysis has been the use of rational expectations, often called model consistent

expectations, where it requires, roughly speaking, that agents’ beliefs about future variables

coincide with expectations predicted by the model. While it has been the main ingredient

of most dynamic general equilibrium models studied these days, the assumption imposes

strong restrictions on agents’ behaviors. For example, it is unlikely that consumers are fully

aware of the underlying mechanisms governing firms’ price-setting practices, technological

progress, or other types of uncertainty regarding fundamentals of the economy.6

This paper relaxes restrictions imposed on agents’ knowledge about the stochastic pro-

cesses governing the economy: a stochastic signal about a permanent component of pro-

ductivity is assumed to be not only noisy but also ambiguous in its information quality. As

agents’ beliefs about the state of the economy critically affect macroeconomic dynamics,

how expectations are formed under ambiguity turns out to be very important. In other

words, agents face an additional challenge to perceive information of uncertain quality

given their preferences. This, in turn, requires to model preferences under ambiguity, and

6A number of studies aim to relax such restrictions and to document subsequent macroeconomic out-
comes. For instance, Bianchi and Melosi (2016) develop methods to study general equilibrium models
where forward looking agents learn about the stochastic properties of realized events following waves of
pessimism, optimism, and uncertainty, and Adam and Marcet (2011) relax the rationality assumption to
capture the notion that agents do not fully understand some underlying statistical properties.
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I follow the setup axiomatized by Gilboa and Schmeidler (1989) and recently adopted by

Epstein and Schneider (2008), Ilut (2012), Ilut, Kehrig, and Schneider (2017), and Baqaee

(2016), applying the maxmin expected utility decision with multiple priors, where behavior

derived from the decision rule is consistent with experimental evidence such as the Ellsberg

Paradox.7 Thus, agents behave as if they maximize expected utility under a worst-case

evaluation of information quality, and conditional consumption responses exhibit asym-

metries: the absolute size of the responses depends on whether noisy information delivers

good news or bad news.

Specifically, the theory is based on a model of business cycles driven by shocks to agents’

expectations regarding productivity where agents form anticipations about the future by

observing noisy signals about productivity as in Blanchard, L’Huillier, and Lorenzoni (2013)

and Cao and L’Huillier (2017). These signals sometimes turn out to be news and sometimes

just noise, and agents need to solve a signal extraction problem to decide how much to

consume. Later on, if information turns out to be news, agents adjust their expectations

upward, and the economy gradually adjusts to a new level of activity; if ex-post information

turns out to be just noise, the economy returns to its original state of activity.

In my model, I modify this information structure such that agents are uncertain about

the quality of noisy signals they receive, and the uncertainty is captured by the range of

precisions :

1/σ2
ν ∈ [1/σ̄2

ν , 1/σ
2
ν ]

where the precision is defined to be the inverse of the variance, and 1/σ2
ν denotes the true

signal precision. Therefore, the concept of the range of precisions is associated with agents’

inability to perfectly identify the value of information they receive: how much weight to

attach on the new information can not be pinned down by a single precision, but by the

range of precisions. It also implies that the true signal precision is bounded by this range

of precisions.

In such a case, if agents are assumed to exhibit aversion toward ambiguity, they follow

the maxmin optimization by which they make decisions that maximize expected utility

under a worst-case belief, and such decision making depends on the types of signals they

receive. For a signal delivering bad news, a worst case is that the signal is very informative.

Conversely, for a signal delivering good news, a worst case is that the signal is very noisy.8

This makes the agents react more to bad news than to good news such that the size of

7In these models, agents possess multiple priors about the information quality of their signals and act
upon their worst case prior to make decisions under ambiguity. In my model, in addition to an ambiguous
signal, agents receive an additional signal which is assumed to be unambiguous.

8Differentiating a signal delivering good news from the one delivering bad news is discussed in Section
2.
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the response is larger in an absolute value when bad news is delivered. In addition, when

information quality becomes more ambiguous and the range of precision gets larger, the

responses exhibit a larger degree of asymmetries.

Relation to literature:

This paper follows the tradition of a business cycle model where expectations play a sig-

nificant role; the original thesis laid out in Pigou (1927), which emphasizes that recessions

could arise as a result of agents’ inability to correctly forecast the economy’s need in terms

of capital and subsequent investment swings, and a recent work by Beaudry and Portier

(2004), where agents receive an imperfect signal about future productivity growth and

make decisions about investment based upon these signals, are frequently cited works that

started this strand of literature. Distinguishing permanent and transitory productivity

shocks is one of the important ingredients in expectation-driven business cycle models and

it is closely examined in Boz, Daude, and Durdu (2011), Lorenzoni (2009), Blanchard et al.

(2013), and Rousakis (2013). While sharing similar information structures and agents’ in-

formation processing, I extend the setup to allow for uncertain quality of information and

agents’ aversion toward uncertainty.

Many recent papers have adopted ambiguity and study macroeconomic dynamics and

asset pricing. Epstein and Schneider (2008) discuss asset markets in which ambiguity averse

investors process news of uncertain quality with a worst-case assessment of information

quality, and the model generates more stronger reaction to bad news than good news which

results in asymmetric responses in asset market; Ilut (2012) builds a model of exchange

rate determination where an ambiguity averse agent solve a signal extraction problem with

uncertain signal precision and take departures from uncovered interest rate parity; in Ilut

et al. (2017) firms’ hiring decision is modeled under ambiguous information. Firms receive

ambiguous information about productivity of the economy and maximize multiple priors

utility, which reflects firms’ aversion to ambiguity; Baqaee (2016) attempts to incorporate

ambiguous information and the signal extraction problem in order to explain downward

wage rigidities where an equilibrium wage is more sensitive to inflation than to disinflation;

Ilut and Saijo (2016) build an economy where firms are uncertain about their profitability,

and the problem is constructed in such a way that the signal precision varies over the cycle.

Specifically, the more a firm produces the more precise the signal becomes.9

9Similarly, Ilut and Schneider (2013) build a state-of-the-art ambiguous business cycle model where
shocks to confidence, which is modeled as changes in ambiguity, play important role in explaining fluctu-
ations. Whereas Ilut and Schneider (2013) introduce ambiguity in a productivity shock with first-order
effects, Masolo and Monti (2015) study the implication of introducing ambiguity in a monetary policy
shock.
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The rest of the paper is organized as follow. Section 2 illustrates how agents update

beliefs under ambiguity, which is the key ingredient to explain the main mechanism of this

model. Section 3 presents the model, and Section 4 studies quantitative implications of the

model. Section 5 concludes.

2 Belief updating under ambiguity

One of the key ingredients of this model is to determine how agents update beliefs under

ambiguity. Since consumption is assumed to depend solely on agents’ expectation about

productivity in the long run, it is essential to study how agents update beliefs about the

unobserved state of the economy. With information quality being ambiguous, this task

becomes non-trivial.

2.1 The one signal example

Consider the following case in which agents observe a noisy signal st about productivity

xt:

st = xt + νt

where νt is an i.i.d. normal shock with variance σ2
ν . The information quality of the signal is

assumed to be ambiguous such that σ2
ν ∈ [σ2

ν , σ̄
2
ν ].

10 The productivity component xt follows

a stochastic process:

xt = xt−1 + εt

where εt is an i.i.d. normal shock with variance σ2
ε . The two innovations are assumed to

be independent of each other at all leads and lags. Characterizing agents’ belief updating,

the one-step ahead prediction of the fundamental at period t− 1 (xt|t−1) and its associated

error variance (Σt|t−1) are given by

xt|t−1 = xt−1|t−1

Σt|t−1 = Σt−1|t−1 + σ2
ε

where xt−1|t−1 and Σt−1|t−1 are the updated (posterior) belief at period t− 1 and its asso-

ciated error variance.

Agents are assumed to be bounded rational in the sense that their information set at

10For the rest of this paper, I use both the variance σ2
ν and the precision 1/σ2

ν interchangeably to describe
information quality. Note that σ2

ν is not time-varying, nor are σ2
ν and σ̄2

ν such that the ambiguity is assumed
to be time-invariant.
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st
st = xt|t−1

σν = σν σν = σ̄ν

Figure 1: The cutoff rule for belief updating

Notes: 1/σ2
ν is the precision of information quality which is assumed to be ambiguous such that 1/σ2

ν ∈ [1/σ2
ν , 1/σ̄

2
ν ].

period t is limited to

It =
(
st, xt−1|t−1,Σt−1|t−1

)
.

In other words, bounded rational agents would only consider the latest signal (st) to eval-

uate various scenarios conditional on the updated belief (xt−1|t−1) and its associated error

variance (Σt−1|t−1) at period t − 1. Then, by observing the noisy signal, agents update

beliefs about the fundamental:

xt|t = xt|t−1 +Gaint
(
st − xt|t−1

)
(1)

Σt|t =

(
σ2
ν

Σt|t−1 + σ2
ν

)
Σt|t−1

where xt|t and Σt|t are the updated (posterior) belief at period t and its associated error

variance. Gaint is the (bounded rational) Kalman gain defined as

Gaint =
Σt|t−1

Σt|t−1 + σ2
ν

.

Assume that agents set consumption equal to their long-run productivity expectation:

ct = lim
j→∞

Êt[xt+j].

Agents’ utility function is strictly increasing in c, and that agents are ambiguity averse

such that they maximize expected utility under a worst case belief chosen from the family

of priors.11 This, then, leads to agents updating beliefs according to the cut-off rule shown

in Figure 1.12

From (1), it is easy to show that whenever st > xt|t−1, the largest Gaint minimizes xt|t.

11Here, the family of priors refers to the range of precisions.
12Deriving this cut-off rule depends crucially on the bounded rationality assumption, and while fully

rational agents’ behaviors are interesting itself, I focus on bounded rational agents’ behaviors under ambi-
guity in the present context. In Appendix B, I discuss the consequence of relaxing the bounded rationality
assumption.
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Similarly, when st < xt|t−1, minimizing xt|t requires that Gaint takes the smallest value.

As Gaint is strictly increasing in 1/σ2
ν , only the maximum (1/σ2

ν) and the minimum (1/σ̄2
ν)

from the range of precisions become relevant to update beliefs for ambiguity averse agents,

which simplifies solving the model.13 Intuitively, ambiguity averse agents consider a signal

very noisy when they receive good signals. On the contrary, they interpret a signal as

very informative when receiving bad signals.14 Obviously, for the limiting case in which a

signal is related to a single likelihood (σ2
ν = σ̄2

ν = σ2
ν), the gain of observing noisy signals is

pinned down by Gaint = Σt|t−1/(Σt|t−1 +σ2
ν) regardless of whether the signal delivers good

(st > xt|t−1) or bad news (st < xt|t−1).

Figure 2 plots an asymmetric response to the realization of the signals. The size of

the response is larger in absolute value when a bad signal is delivered. In addition, when

information quality becomes more ambiguous, the responses exhibit a larger degree of

asymmetries.

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

σν ∈ [1.00,1.00]

σν ∈ [0.75,1.25]

σν ∈ [0.50,1.50]

σν ∈ [0.25,1.75]

Figure 2: Asymmetric belief updating

Notes: The updated belief xt|t is determined by a signal extraction problem where xt|t = xt|t−1 + Gaint(st − st|t−1) and
st = xt+νt. The variance of x is set to 0.5 and the variance of ν varies. The x-axis denotes denotes realized news (st−st|t−1)
and the y-axis denotes the updated belief (xt|t).

2.2 Extension to the multiple signal case

Assume now that agents receive multiple signals about the fundamental where one of the

signals is ambiguous. Here, let the number of signals be two.15 Specifically, in addition to

13As the Kalman gain is given by

Gaint =
Σt|t−1

Σt|t−1 + σ2
ν

,

it is straightforward to show that ∂Gaint/∂σ
2
ν = −Σt|t−1/

(
Σt|t−1 + σ2

ν

)2
< 0 by holding Σt|t−1 constant.

14To clarify definition, a signal is said to deliver good news whenever it is greater than agents’ ex-ante
expectations and vice versa.

15Extending the discussion to the case where the number of signals is N and N − 1 of them are unam-
biguous is trivial. However, the case in which there are N > 1 ambiguous signals is more complicated than
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the noisy signal st described in the previous section, agents receive an additional signal at

whose quality is measured by the signal precision 1/σ2
η:

at = xt + ηt

where ηt is an i.i.d. normal shock with variance σ2
η, and the three innovations are inde-

pendent of each other at all leads and lags. Agents use the two signals to update beliefs

about the fundamental xt. Let Et[xt] = E[xt|It] = xt|t and Et−1[xt] = E[xt|It−1] = xt|t−1

respectively represent the estimates of xt with the information set at time t (It) and time

t− 1 (It−1):16

xt|t = xt|t−1 +Gaint(St − St|t−1) (2)

where St = (st, at)
′
is a vector of signals and Gaint = (Gt, Ht) is a row vector representing

the gains of observing the signals. Specifically, Gt and Ht respectively denote the Kalman

gain of observing the ambiguous signal (st) and the unambiguous signal (at).

From (2) the updated estimate on xt with two signals can be summarized by a weighted

average of the previous period estimate of the fundamental xt|t−1 and of revisions based on

the surprises associated with the realization of each shock:

xt|t = xt|t−1 +Gt(st − st|t−1) +Ht(at − at|t−1) (3)

where

Gt =

(
σ2
ηΣt|t−1

σ2
νσ

2
η + σ2

νΣt|t−1 + σ2
ηΣt|t−1

)
and

Ht =

(
σ2
νΣt|t−1

σ2
νσ

2
η + σ2

νΣt|t−1 + σ2
ηΣt|t−1

)
represent the relative importance of the errors (the surprises) with respect to the prior

estimate and Σt|t−1 denotes the error variance of the one-step ahead prediction of the

fundamental. From (3), I can show that ambiguity averse agents update their beliefs

can be dealt with in this paper, and it is not explicitly discussed in the present context.
16The information set It is given by

It =
(
at, st, xt−1|t−1,Σt−1|t−1

)
.
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according to the following decision criteria:

σ2
ν =

σ2
ν , if at > xt|t−1 and st < xt|t−1

σ̄2
ν , if at < xt|t−1 and st > xt|t−1

As Gt (Ht) is increasing (decreasing) in the signal precision (1/σ2
ν), whenever revisions

to the previous period estimate of the fundamental following the signals, (at − xt|t−1) and

(st−xt|t−1), have different signs, it is easy to pin down the signal precision to minimize xt|t.

For instance, when at > xt|t−1 and st < xt|t−1, Gt should take the largest values and Ht

smallest value. Thus, 1/σ2
ν minimizes the estimate of the fundamental xt|t. Similarly, when

at < xt|t−1 and st > xt|t−1, minimizing xt|t requires Gt to take the smallest value and Ht to

take the largest possible value such that 1/σ̄2
ν is chosen to update beliefs. Intuitively, as a

given signal becomes less precise, the gain from observing that particular signal is relatively

smaller; at the same time, you gain relatively more from observing the other signal. Left

panel in Figure 3 depicts this cut-off rule of ambiguity averse agents. When both signals

are greater than (the upper-right quadrant) or smaller than (the lower-left quadrant) the

previous period estimate of the fundamental, (3) does not produce simple decision criteria

as a function of at, st, and xt|t−1.

st = xt|t−1

at

st at = xt|t−1

σν = σ̄ν

σν = σν

st = xt|at

at

st

σν = σ̄ν

σν = σν

Figure 3: The cutoff rules: from (3) (left) and (4) (right)

Notes: Left panel represents the decision rule of simultaneous belief updating, whereas right panel depicts the decision rule
of sequential belief updating. In this particular case, it is assumed that at = xt|t−1.

However, this does not imply that simple decision criteria can be found for belief updat-

ing: a slight reformulation of agents’ belief updating can actually deliver simple decision

criteria.
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2.2.1 Sequential belief updating

Let the agents update beliefs sequentially: they first update beliefs with the unambiguous

signal at and then with the ambiguous signal st. E[xt|at, xt−1|t−1,Σt−1|t−1] = xt|at and

E[xt|It] = xt|t respectively represent a belief updated with observed productivity and a

belief updated with both signals, and agents’ belief updating is given by

xt|at =

(
σ2
η

σ2
η + Σt|t−1

)
xt|t−1 +

(
Σt|t−1

σ2
η + Σt|t−1

)
at

xt|t = xt|at +

(
Σt|at

Σt|at + σ2
ν

)(
s− xt|at

)
(4)

where Σt|at is the error variance associated with the prediction xt|at . Then, ambiguity averse

agents update beliefs according to the following decision rule:

σ2
ν =

σ̄2
ν , if st > xt|at

σ2
ν , if st < xt|at

From the second term in (4), whenever st > xt|at , 1/σ̄2
ν (low precision) is chosen to

update beliefs since the attached weight to the revision based on the surprise associated

with the noise shock (st) is decreasing in the signal precision. Similarly, whenever st < xt|at ,

1/σν (high precision) is chosen to update beliefs. Right panel in Figure 3 depicts this cut-off

rule for the ambiguity averse agents.

At first glance, it seems that the sequential and simultaneous belief updating give

different results. However, one can easily show that updating beliefs sequentially (Equation

4) is same as updating beliefs simultaneously (Equation 3). This is consistent with the view

that when updating beliefs agents would use all information including any contemporaneous

unambiguous information to make decisions under ambiguity.17 Appendix E provides a

formal proof of this claim.

3 Model

Having illustrated agents’ belief updating, which will be a crucial ingredient of the model

to be followed, for the rest of the paper, I concentrate on the following simple setup which

is analytically convenient and simultaneously provides a good starting point to look at the

17It is important to note that updating beliefs sequentially by first processing an ambiguous signal (st,
in this example) does not produce the same updated belief as simultaneous belief updating. In this case,
agents are expected to deliberately leave out some valuable information (an unambiguous signal at) when
making decisions under ambiguity.
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post-war U.S data. The model aims to capture the notion that productivity changes follow

two types of shocks. The first one, which I call a permanent shock, has a permanent effect

on productivity movements, and the effects of the second one, a transitory shock, die out

gradually.

The second ingredient is that consumers’ spending decisions are based on their expec-

tations about the future, in particular, about the long-run productivity. I assume that

agents observe productivity as a whole but are not able to separately observe two compo-

nents. Allowing for the idea that agents have more information than merely current and

past productivity, agents are assumed to observe an additional signal about the permanent

productivity. The novelty of this model is that agents perceive this signal as ambiguous.

Given this information structure, agents are to solve the signal extraction problem and,

given their expectations, choose consumption spending.

To focus on the informational aspect of the model, the model is deliberately simplified

such that consumption is the only endogenous variable to be solved for, and the dynamics

of consumption is determined by productivity shocks and a shock to the noise in the

signal. Specifically, I lay out a business cycle model based on Cao and L’Huillier (2017)

and derive a limiting result for consumption where it is fully determined by consumers’

long-run productivity expectation.

3.1 Information structure

Consider a “news and noise” information structure where productivity (in logs) is composed

of two components - a permanent component xt and a transitory component zt:

at = xt + zt (5)

where agents do not observe the two components separately. Instead, they observe produc-

tivity as a whole.

Following Aguiar and Gopinath (2007), Boz et al. (2011), Garcia-Cicco, Pancrazi, and

Uribe (2010), Blanchard et al. (2013) among others, the permanent component follows

a trend that changes randomly due to permanent productivity shocks, and it follows the

stochastic process:

∆xt = ρx∆xt−1 + εt (6)

whereas the transitory component follows the stationary stochastic process where it dies

out after transitory productivity shocks:

zt = ρzzt−1 + ηt. (7)

12



The coefficients ρx and ρz are assumed to be in [0, 1) and εt ∼ N(0, σ2
ε ) and ηt ∼

N(0, σ2
η). Agents are assumed to know the precisions of the productivity shocks and both

technologies have an identical persistence such that ρx = ρz ≡ ρ. I assume that the

following condition holds:18

ρσ2
ε = (1− ρ)2σ2

η (8)

which implies that the univariate process for at is a random walk:19

E[at+1|at, at−1, . . . ] = at.

In addition to productivity, agents observe a noisy signal concerning the permanent

component of productivity:

st = xt + νt (9)

where νt is an i.i.d. normal shock with mean zero and variance σ2
ν . The processes {εt}∞t=0,

{ηt}∞t=0, and {νt}∞t=0 are assumed to be independent of the process {xt}∞t=0 and of each

other. Following Epstein and Schneider (2008) there is incomplete knowledge about signal

quality, and the agents treat signals as ambiguous by updating beliefs as if they have

multiple likelihoods. Specifically, the noisy signal st is related to the process xt by a family

of likelihoods through the signal precision:

1/σ2
ν ∈ [1/σ2

ν , 1/σ̄
2
ν ].

Therefore, agents depart from Bayesian updating20 and do not know the exact sig-

nal quality. Instead, the quality of information is captured by the range of precisions,

[1/σ̄2
ν , 1/σ

2
ν ]. In addition, agents are assumed not to be able to attach subjective probabili-

ties to the priors; if they can, agents would simply form a subjective expectation to update

beliefs.21

A signal is said to be more ambiguous if, given the lower (1/σ̄2
ν) or the upper bound

(1/σ2
ν) of the signal precisions, the difference between the two is greater.22 At the limit

(1/σ2
ν = 1/σ̄2

ν = 1/σ2
ν) agents update beliefs by a Bayesian process in which they use the

standard Kalman filter with the signal precision given by 1/σ2
ν to estimate the fundamental.

18This restriction on the variances does not qualitatively change the results obtained in Section 4.
19Blanchard et al. (2013) show that this random walk productivity representation is not only analytically

convenient but also largely consistent with actual productivity data.
20If 1/σ2

ν = 1/σ̄2
ν , we are back to Bayesian updating.

21For example, if agents have a subjective belief such that p(1/σ̄2
ν) = 1/3 and p(1/σ2

ν) = 2/3, then they
can construct a subjective expectation on 1/σ2

ν : E[1/σ2
ν ] = 1/3

(
1/σ̄2

ν

)
+ 2/3

(
1/σ2

ν

)
.

22Similarly, assume that the range of precisions is given by
[
(1− ξ)

(
1/σ2

)
, (1 + ξ)

(
1/σ2

)]
, and 0 < ξ <

1, then a large value of ξ corresponds to the signal being relatively more ambiguous.
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The range of precisions is assumed to remain constant over time and does not depend on

other parameters.

One could ask about the possibility that both signals, observed productivity (at) and

the noisy signal (st), are ambiguous with unknown variances. While it surely is a possibility,

I would argue that observed productivity, which is here assumed to be unambiguous, comes

from a more reliable and objective source, whereas the noisy signal about the permanent

component of productivity, could be obtained from less objective sources. For example, the

noisy signal may result from a conversation with friends, co-workers, or even someone you

meet on the street. In addition, even if both signals are of ambiguous quality, assuming that

one of them is unambiguous is still a good approximation and a good starting point as long

as this signal is relative less ambiguous than the other; having both signals unambiguous

makes agents’ belief updating very complicated without adding much intuition. Therefore,

I would continue to assume that only one of them, the noisy signal, is ambiguous.

3.1.1 Skewed consumption growth

An important implication of this model is that agents’ beliefs and consumption responses

are negatively skewed. Table 2 documents skewness of consumption expenditure growth

per capita of the U.S. from 1970:I to 2016:I conditional on productivity process. It shows

that consumption series is skewed more to the left than productivity series is. Labor is

assumed to be the only input of the production process such that productivity is defined to

be the output divided by labor input. I divide the sample into two subsamples where in the

first sample observations are those that the log difference of output, log(At)− log(At−1), is

greater than 0.0032 and for the second sample, I take those such that log(At)− log(At−1)

is less than 0.0032. Computing the skewness of consumption expenditure growth and

productivity growth of the two samples, I find that consumption growth is more left-skewed

than its productivity growth counterpart in the high productivity sample whereas they are

more or less equally skewed in the low productivity sample.23

Similarly, I regress consumption growth on productivity growth and obtain residuals εolst

where the residuals can be thought of as the variations in consumption growth not explained

by the variations of productivity changes. The skewness of the residuals under different

specifications are all estimated to be strictly negative and statistically significant at the

1% level (p-val < 0.01), suggesting that the asymmetries are effective beyond productivity

changes.

However, it does not provide any concrete evidence on why a noisy signal should be

23Conducting the exercise with TFP data (dtfp util) from Fernald (2014) draws a similar conclusion
such that the estimated skewness from the TFP series for the sample period is 0.2967.
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Table 2: Left-skewed consumption growth conditional on (labor) productivity

Sample Consumption skewness Productivity skewness Number of observations

Whole sample -0.9014 -0.1812 185

High (labor) productivity 0.1666 1.7957 93

Low (labor) productivity -1.2042 -1.2360 92

Notes: The first sample (high productivity) contains observation for those with productivity growth higher than the average
of the whole sample where the average productivity growth in the whole sample is 0.0032. Similarly, the second sample (low
productivity) includes those observations with productivity growth lower than the average.

Table 3: Consumption and productivity regressions

Specification ∆a ∆a(−1) ∆c(−1) Skewness of residuals

1 0.4976 (0.0629) -0.6897

2 0.5037 (0.0618) 0.1936 (0.0621) -0.6230

3 0.4687 (0.0632) 0.1106 (0.0721) 0.1633 (0.0741) -0.5139

Notes: Standard errors are in parentheses. A constant term is included in all specifications.

ambiguous instead of productivity observation. Conceptually, a model in which agents are

ambiguous about productivity observation can also deliver negatively skewed consumption

responses. Although I cannot tell which one of the signals is the underlying source of am-

biguity, a sensible first step is to analyze the consequence of agents receiving an ambiguous

noise signal about permanent productivity as observed productivity is likely coming from

more reliable sources.

3.2 Production and consumption

With ambiguous information quality, a representative consumer maximizes multiple priors

utility:

max
Ct

min
Ω

Et
[ ∞∑
t=0

βt logCt

]

where the prior is on information quality of the signal st: Ω = [1/σ̄2
ν , 1/σ

2
ν ], and expectation

is conditional on information available at period t (It). As discussed in the previous section,

consumers are bounded rational, and their information set (It) includes observations at

period t and the updated belief and associated error variance at period t− 1:

It =
(
st, at, xt−1|t−1,Σt−1|t−1

)
.
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The consumers’ utility maximization adheres to the maxmin criterion such that they

maximize expected utility under a worst-case evaluation of information quality chosen from

the prior Ω. With the min operator consumers evaluate different scenarios according to

their priors and choose the worst case scenario available conditional on their decisions on

the choice variables. With the max operator consumers maximize the worst case expected

utility by choosing over the choice variables. For the rest of the paper, with a slight abuse

of notation, I use the expectation operator Êt to denote the consumers’ expectation based

on a worst-case belief such that consumers maximize multiple prior utility

Êt
[ ∞∑
t=0

βt logCt

]

subject to

Ct +Bt = Yt +QtBt+1

where Bt is the external debt of the country, Qt is the price of this debt, and Yt is the

output of the country. Output is produced using only labor

Yt = AtN (10)

where At = exp(at) and the labor input is assumed constant. The resource constraint is

Ct +NXt = Yt. (11)

The price of debt is sensitive to the level of outstanding debt:

1

Qt

= Rt = R∗ + ψ

{
e
Bt+1
Xt
−b − 1

}
(12)

where b denotes the steady state level of Bt+1/Xt.

From the consumers’ optimization problem, the following first order condition is ob-

tained:

1

Ct
= βRtÊt

[
1

Ct+1

]
. (13)

The ratio of consumption-to-productivity is defined by

ĉt = log(Ct/Xt−1)− log(C̄/X̄)
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and I also define the log-deviation of consumption as

ct = ĉt + xt−1. (14)

Limit result for consumption

As in Cao and L’Huillier (2017), I derive a limit result for consumption in which consump-

tion is entirely determined by consumers’ long-run productivity expectation under a worst

case assessment of information quality. Specifically, I show that as the interest rate goes to

one in the steady state (β → 1) and the interest rate becomes insensitive to debt-holding

(ψ/(1 − β) → 0), consumption ct is only a function of belief about the long-run under a

worst-case belief:24

Proposition 1 (Consumption) As β → 1 and ψ/(1− β)→ 0,

ct =
1

1− ρ

(
Êt [xt]− ρÊt [xt−1]

)
(17)

where Êt [xt] and Êt [xt−1] represent the consumers’ expectations on the current and the

24Similarly, one can derive this limit consumption result as in Blanchard et al. (2013). Assume that
consumption smoothing leads to the consumption Euler equation:

ct = Ê [ct+1|It] = Êt [ct+1]

where Ê to denote the consumers’ expectation based on a worst-case belief at period t, which implies that
consumption at period t is equal to expected consumption under a worst case assessment of information
quality at period t+ 1. As ct = Êt [ct+1] , ct+1 = Êt+1 [ct+2] , . . . , by the law of iterated expectation

ct = lim
j→∞

Êt [ct+j ] .

Having a long-run restriction such that

lim
j→∞

Êt [ct+j − at+j ] = 0

where the lower case denotes a log transformation of a given variable, I get

ct = lim
j→∞

Êt [at+j ] (15)

from which I obtain

ct =
1

1− ρ

(
Êt [xt]− ρÊt [xt−1]

)
. (16)

The underlying assumption in this stylized model is that the supply side is drastically simplified such
that I consider an economy where consumption is the only demand component with no capital and output
is perfectly determined by the demand side. This implies that yt = ct and to produce output yt, conditional
on the current level of productivity at, the labor input adjusts. On the contrary, in an open endowment
economy, whenever yt 6= ct consumption smoothing households, having access to an internationally traded
bond, borrow (lend) against (for) future income.
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lagged permanent components of productivity under a worst-case belief.

Proof. See Appendix D.2.

This simple permanent income consumption model can be derived from widely used

DSGEs under certain limiting conditions. For example, Blanchard et al. (2013) theoret-

ically show (Online Appendix Section 6.4.2) that a baseline New Keynesian (NK) model

(without capital and no bells and whistles) converges to a simple permanent income model

with a fixed real interest rate in which consumption is equal to the expectations of the long-

run level of labor productivity. Allowing for ambiguity on information quality, a baseline

NK model converges to a simple permanent income model in which consumption is equal

to the expectations of the long-run level of labor productivity where the expectations are

conditional on a worst case evaluation of information quality. Similarly, Cao, L’Huillier,

and Yoo (2016) show the similar limiting result for consumption in a more general version

of the small open economy RBC model with labor supply and capital.

3.3 Solving the model

As shown in (17), solving the model requires solving for consumption as a function of

beliefs about the long-run productivity under a worst case belief.25 Consumers derive the

expectations on the state vector

xt = (xt, xt−1, zt)
′

using the Kalman filter. Let xt|t = Ê [xt|It], xt−1|t = Ê [xt−1|It] and zt|t = Ê [zt|It] be

the worst case current and lagged beliefs on the permanent component of productivity

and the worst case current belief on the transitory component of productivity. Given new

observations, the previous estimate of the permanent component is updated by applying

the Kalman filter:

xt|t = [I −Gaint × C]Axt−1|t−1 +Gaint × St

where xt|t = (xt|t, xt−1|t, zt|t)
′
and xt−1|t−1 = (xt−1|t−1, xt−2|t−1, zt−1|t−1)

′
are the worst case

beliefs on xt at time t and on xt−1 at time t−1 and St = (at, st)
′
is a vector of observables.

A and C are functions of underlying parameters of the model, Gaint is a vector of Kalman

25Beliefs about the long-run productivity under a worst-case belief refer to

lim
j→∞

Êt [at+j ]
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time
xt|at updated σν chosen and

xt|t updated
t− 1 t

Figure 4: The timing of belief updating

gains, and I is the 3× 3 identity matrix:

A =

1 + ρ −ρ 0

1 0 0

0 0 ρ

 , C =

[
1 0 1

1 0 0

]

As discussed in Section 2.1, Gaint depends on the type of news received.

Assumption 1 Consumers sequentially update beliefs by first updating beliefs with pro-

ductivity observation (at) and then with a noisy signal (st).

Under Assumption 1, the solution to the model can be tracked down by a simple cut-off

rule on the ambiguity parameter σν . Appendix E shows that updated beliefs are the same

whether consumers update beliefs sequentially (Assumption 1) or simultaneously. In the

simultaneous belief updating, agents would use all available information including observed

current productivity to make decisions under ambiguity, which by definition is exactly the

same as updating beliefs sequentially.26 Figure 4 describes the timing of belief updating.

Proposition 2 (The sequential belief updating) The sequential updating of consumers’

beliefs can be given by

xt|t = Atxt−1|t−1 + Btat +Gtst (18)

where At = [I −GtC2] [I −HtC1]A, Bt = [I −GtC2]Ht, Ht is the Kalman gain of observ-

ing productivity at, Gt is the Kalman gain of observing a noisy signal st, and A, C1, and

C2 are the matrices of underlying parameters:

C1 =
[
1 0 1

]
, C2 =

[
1 0 0

]
.

Proof. See Appendix D.3.

The types of news that the noisy signal delivers play a crucial role in updating beliefs

in terms of choosing the appropriate signal precision. Formalizing the notion, good and

bad news are defined as follows:

26This does not imply that there do not exist order effects. See Appendix E for details.
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Definition 1 (Types of news) The signal st delivers good news when st is strictly

greater than beliefs revised with productivity: st > xt|at . Similarly, the signal st delivers

bad news when st is strictly smaller than beliefs revised with productivity: st < xt|at .

A large noisy signal does not necessarily mean that it delivers good news. Instead, the

types of news are related to the surprises carried by the signal relative to the ex-ante belief,

xt|at . The three shocks in the model are not identical in terms of the types of news that they

deliver. Specifically, while a positive permanent productivity shock and a positive noise

shock deliver good news to consumers, a positive transitory shock generates bad news. The

intuition for these results is straightforward. A positive permanent shock to productivity

increases a noisy signal one-to-one but due to the presence of the transitory component,

agents underestimate the productivity increase such that st > xt|at . Consequently, it

delivers good news to consumers. Also, as a (positive) noise shock does not affect agents’

beliefs, it also delivers good news. Finally, for a positive transitory shock, an increase in

ηt positively affects productivity but it has no effect on a noisy signal. As st < xt|at , it

delivers bad news to consumers. Table 4 summarizes the relationship between the shocks

and the types of news delivered.

Table 4: Shocks, news, and information quality

Shocks (+) News type Information quality ∆ c ∆ a

Permanent tech shock (ε) Good Low + +

Transitory tech shock (η) Bad High + +

Noise shock (ν) Good Low + no change

Notes: Assume that the shocks are positive ones. +’s in ∆c and ∆a refer to the increases in consumption and productivity.
As discussed in Section 2, the types of news that signals deliver are directly associated with perceived information quality.
For example, signals delivered by permanent productivity shocks and noise shocks are perceived (by the consumers) as low
quality whereas transitory shocks to productivity generate signals with high perceived quality.

Proposition 3 (The cut-off rule with good news) Let xt|t be the beliefs updated with

both observed productivity and a noisy signal, and xt|at be the beliefs updated only with

observed productivity:

xt|t = Ê [xt|It] ,

xt|at = Ê
[
xt|at, xt−1|t−1,Σt−1|t−1

]
.

Then, if st > xt|at (delivering good news), the following conditions are satisfied:

(i) xt|t − xt|at > 0, xt−1|t − xt−1|at > 0, zt|t − zt|at = 0

(ii) ct|t − ct|at > 0
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(iii) for ambiguity averse consumers, σ2
ν = σ̄2

ν

Proof. See Appendix D.4.

Proposition 4 (The cut-off rule with bad news) Similarly, if st < xt|at (delivering

bad news), the following conditions are satisfied:

(i) xt|t − xt|at < 0, xt−1|t − xt−1|at < 0, zt|t − zt|at = 0

(ii) ct|t − ct|at < 0

(iii) for ambiguity averse consumers, σ2
ν = σ2

ν

Proof. See Appendix D.4.

Proposition 3 and 4 suggest that for ambiguity averse agents updating beliefs is con-

sistent with choosing an extremum of the range of precisions. Only the boundaries of

the range of precisions (1/σ̄2
ν and 1/σ2

ν) need to be evaluated to solve the model, and the

relevant gains of observing the noisy signal can be either Gt(1/σ
2
ν) or Gt(1/σ̄

2
ν), where

Gt(·) represents the Kalman gain of observing the noise signal with the given precision of

noise at period t. Specifically, noisy signals delivering good news are treated as if they are

uninformative, and the ones delivering bad news are considered very precise.

Definition 2 (The limit case) A limit case refers to the specification in which the range

of precisions degenerates to 1/σ2
ν .

Solving the model, then, requires consumers to determine beliefs about the long-run

productivity under a worst case belief, which is the right-hand side of (17), to satisfy

consumers’ aversion to ambiguity.27

3.3.1 The steady-state Kalman gain

In practice of computing the Kalman gain, one often applies the steady state concept in

the sense that the economy is assumed to have been in operation long enough that the

Kalman gain has converged to its steady state value. When the signal precision is known,

i.e. 1/σ2
ν = 1/σ̄2

ν = 1/σ2
ν , for a reasonable value of signal precision, the convergence of

the Kalman gain to its steady state value is achieved relatively quickly. Figure 5 shows

that the rate of numerical convergence of the Kalman gain in different signal precisions

for the model illustrated in Section 2.1 with a single likelihood. It shows that numerical

convergence of the Kalman gain is achieved relatively quickly. Thus, the assumption of
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Figure 5: Kalman filter: convergence

Notes: The three lines represent the convergence of Kalman gains with the following signal precision (σν = 1/3, σν = 1,
σν = 3 ). x1|0 and Σ1|0 are respectively set to 0 and 106.

the steady-state Kalman gain is not so restrictive in this case where the variances of the

stochastic processes are constant over time.

However, this is not the case when ambiguity is introduced in the model such that

the convergence of the Kalman gain is not achieved even in the long-run.28 Figure 6 (Left

Panel) shows the values for the Kalman gain for a 100-period simulation where σε = σν = 1

and σ̄ν = 1.25 and σν = 0.75. It shows that the Kalman gain numerically do not converge

to the steady state values, the high and low gain respectively for the case of good news (σν)

and bad news (σ̄ν), which are denoted by the dotted lines. This implies that the Kalman

gain is not time-invariant even in the long-run as the signal-to-noise ratio does not remain

constant and depends on the types of news that agents receive.

The high (low) gain is associated with agents receiving bad (good) news. Moreover,

agents tend to overly sensitive to signals they receive: Agents attach more (less) value on

the signals they receive in case of bad (good) news than at the steady state. This is due to

the fact that the error variance Σt|t−1 and the variance of the noise σ2
ν move the Kalman

gain in (2) in opposite directions.

When a spell of consecutive bad (or good) observations is realized, the Kalman gain

indeed converges to the steady state value; however, if agents receive a different type of

news, the Kalman gain does not immediately converge to the (other) steady state value.

In fact, history dependence is crucially important in this case as past realizations of news

affect agents’ present belief formation.

The exception is when the variance of the noisy signal is sufficiently high (σ2
ν >> σ2

ε )

27Specifically, consumers’ filtering in (18) is combined with (17) to determine consumption.
28The only exception is when the fundamental xt is an i.i.d such that xt = εt. In that case, Σt|t−1

and Σt|t are constants and that Σt|t−1 = Σt|t = σ2
ε for all t. Therefore, the Kalman gain takes the value

Gaint = Gain =
σ2
ε

σ2
ε+σ̄2

ν
for the good news regime and Gaint = Gain =

σ2
ε

σ2
ε+σ2

ν
for the bad news regime.
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as shown in Figure 6 (Right Panel) where it shows the values for the Kalman gain for a

100-period simulation where σε = 1, σν = 10, σ̄ν = 12.5, and σν = 7.5.
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Figure 6: Kalman filter: convergence (ambiguous signal)

Notes: The black solid line depicts the Kalman gain according to (2) and the gray dotted lines denote the steady state
Kalman gains for σν = σν (Top) and σν = σ̄ν (Bottom).

3.3.2 Ambiguity toward the Kalman gain

So far, the assumption has been that agents have beliefs about the information precision

and that the information precision is ambiguous:

1/σ2
ν = [1/σ̄2

ν , 1/σ
2
ν ]

While this way of making explicit assumptions about means and variances of stochastic

variables and deriving implications for Kalman gains and conditional best forecasts is a

standard approach, it is not unreasonable to assume that agents directly form beliefs about

how much they learn from one new data point, i.e. beliefs about Kalman gains. Assuming

that such beliefs are ambiguous, the uncertainty can be captured by the range of Kalman

gains :

Gaint = [Gain,Gain]

In other words, agents do not know the Kalman gain due to new information at period t.

Furthermore, they do not believe it is constant, nor do they have a subjective probability

distribution over it. They are firmly convinced that it falls into the range, Gain (low

gain) to Gain (high gain), and exhibit aversion toward uncertainty. Then, with good news

(st > xt|t−1), the computed Kalman gain takes the smallest value (Gaint = Gain) and with

bad news (st < xt|t−1), Gaint = Gain.

Assuming that agents are ambiguous about the Kalman gain simplifies the analysis as

computing the Kalman gain is no longer history-dependent as illustrated in the previous
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section. For the rest of the paper, I will stick to the following assumption of the steady

state Kalman gains.

Assumption 2 (The steady-state Kalman gains) The steady-state Kalman gains are

achieved with respect to 1/σν for the case of good news and 1/σ̄ν for the case of bad news.

4 Quantitative exercises

In this section I adopt the solution procedure described in Subsection 3.3 and proceed to

analyze asymmetries generated by ambiguous information.

4.1 Asymmetric responses of consumption

Figure 7 reports the responses of consumption to the shocks in two different set-ups: (1)

the noisy signal is unambiguous (the limit case) and (2) it is ambiguous. The time unit is

one quarter and the impulse responses are one standard deviation positive and negative

shocks. Responses of the positive shocks are depicted in the first column, and those of

the negative shocks are depicted in the second column. I use the estimated parameters

in Table 6 as parameters. More precisely, the persistence parameter for productivity ρ is

set to 0.9754, and σu is set to 0.68%. This implies that the standard deviations of the

technology shocks are given by σε = 0.02% and ση = 0.67%. The standard deviation of

the noise shock, σν , is set to 3.86%, and the range of precisions is given by [4.65%, 3.51%].

Since ambiguity has no effect on the dynamics of productivity, the productivity responses

are completely symmetric as depicted in Figure 8. Obviously, as productivity does not

depend on the consumers’ expectations, a noise shock does not move productivity at all.

In response to a permanent technology shock εt, consumption increases slowly, which

implies that the volatilities of other shocks, which cloud consumers’ ability to recognize and

adjust consumption, are large. In response to a transitory technology shock ηt, consump-

tion initially increases but then declines. As productivity initially increases and then slowly

declines, consumers partly believe that this increase in productivity is due to a permanent

increase in productivity. However, consumers do learn over time that the increase in pro-

ductivity is due to the transitory shock and consumption returns to the original level. For

a noise shock νt, consumption increases and then returns to normal over time. It is such

that the consumption responses are symmetric in the limit case. However, with ambiguity,

consumption, in most cases, tends not to move as much as in the limit case.

The effects of ambiguity can be observed from the asymmetric responses of consumption

to the signs of the shocks. Under ambiguity, consumers are hesitant to respond to good news
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Figure 7: Impulse responses: consumption

Notes: Plots in the left column correspond to the IRFs of positive shock of one standard deviation and those in the right
column correspond to the IRFs of negative shock of one standard deviation. The solid line corresponds to the case in which
the noisy signal is ambiguous whereas the dotted line corresponds to the limit case in which σ2

ν = σ̄2
ν .

but are more willing to react to bad news. The intuition is that, with ambiguity, consumers

become pessimistic about the future (which is not only uncertain but also ambiguous) and

that such pessimism directly translates into consumption responses in this setup.

Figure 9 depicts the asymmetric responses of consumption more closely by comparing

the size of consumption responses to the shocks with different signs. In the limit case,

the magnitudes of the effects are completely symmetric. However, when the noisy signal

is ambiguous, the magnitudes of the responses are greater with the negative shocks (solid

line) than with the positive shocks (dotted line).

To examine how the downward bias of ambiguity averse consumers translate into con-

sumption dynamics, I conduct the following simulation exercise: I keep the underlying
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Notes: The IRFs of productivity is identical in both the limit case and ambiguous specification. Productivity does not
respond to a noise shock.
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Figure 9: Size of impulse responses: consumption

Notes: In order to compare the magnitude of the responses, I multiply -1 to the responses of consumption with negative
shock and plot it with the responses to the positive shock. The solid line corresponds to the case in which the shocks are
positive and the dotted line corresponds to consumption responses the following negative shocks.

(unambiguous) parameters the same as in the previous exercise and use different values for

the range of precisions to evaluate the effects of ambiguity on consumption dynamics. I

fix the true signal precision (in terms of σν) as the midpoint and allow for the ranges of

precisions with different degrees of ambiguity.29

Table 5 reports the simulated consumption moments. The first row represents the limit

case where the noisy signal is unambiguous, and the rest considers the case in which the

signal is ambiguous. It shows that the larger degree of ambiguity is associated with more

negatively growth and higher volatility.

29For simulation exercises, I fix the length of series to 1000 periods and the number of replication is set
to 10000.
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Table 5: Consumption moments simulation

Specification [σν , σ̄ν ] Skewness Variance (%) Mean

1. [3.860, 3.860] 0.000 0.680 0.000

2. [3.474, 4.246] -0.176 0.684 0.000

3. [2.895, 4.825] -0.454 0.704 0.000

4. [1.930, 5.790] -1.035 0.793 0.000

5. [0.965, 6.755] -2.092 1.062 0.000

6. [0.386, 7.334] -3.634 1.677 0.000

Notes: The true signal precision (1/σ2
ν) is given by 1/(0.0386)2. For this exercise I fix the true signal precision as the midpoint

and assume that the degrees of ambiguity is symmetric. The six specifications are in an increasing degree of ambiguity from
Specification 1 to Specification 6.

4.2 Separation of beliefs from fundamentals

One of the interesting features of this model is when information is assumed to be am-

biguous, the relationship between agents’ beliefs and fundamentals can potentially become

unrelated to each other. For example, consider the simple model in Section 2.1. Specifically,

take the extreme case where the range of precisions is given by

1/σ2
ν,t ∈ [0,+∞]

which implies that when agents receive good news (st > xt|t−1), they would consider this

information useless, whereas when agents receive bad news (st < xt|t−1), they would take

this information at face value. Since xt follows a random walk, agents’ beliefs can be

characterized by

xt|t ≤ xt−j|t−j, ∀1 ≤ j ≤ t (19)

implying that agents’ beliefs are non-increasing. Given the initial condition such that

x0|0 = x0 (agents’ beliefs are correct to begin with), this amounts to more and more

negative beliefs about fundamentals over time. At the same time, the series for agents’

beliefs can become flat for extremely long periods as agents’ beliefs would become detached

from fundamental as in (19). This would lead to the flattened series of agents’ beliefs.

Departing from this extreme case example, a presence of ambiguity would still generate

separation of beliefs from fundamentals, and how severe a detachment is can be attributed

to the degree of ambiguity. First, assuming that noisy signals are unambiguous, I run the

Kalman smoother on U.S. data to extract the sequence of structural shocks and construct

the series of productivity (at) and of the noisy signal (st) - the two signals consumers

observe. Then, I feed these signals into my model with ambiguity and reconstruct the
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series for beliefs about the fundamental and consumption growth. I use four different sets

of values on the range of precisions, [(1−ξ)σν , (1+ξ)σν ], where σν is the estimated standard

deviation of the noise shock, and the four specifications are given by (1) ξ = 0, (2) ξ = 0.1,

(3) ξ = 0.25, and (4) ξ = 0.5.

Figure 10 shows that agents consume less with more ambiguous the signals are. This

may provide some interesting welfare consequences. Less (more) willingness to react to

good (bad) news translates into underestimating the economy’s long run potential, which

in turn decreases contemporaneous consumption and is welfare worsening.

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015
-2
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0

1

2
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Figure 10: Reconstructed consumption with ambiguity

Notes: The figure shows the detrended consumption. The smoothed estimates of productivity and noisy signals are obtained
from the U.S data with the limiting assumption (σν = σ̄ν). The solid line corresponds to the path of consumption without
ambiguity. The dashed lines correspond to the counterfactual sample paths obtained with different degrees of ambiguity. The
size of ambiguity is captured by the parameter ξ such that σν,t ∈ [(1− ξ)σν , (1 + ξ)σν ] where σν = 4.36%.

4.3 Estimation

4.3.1 Econometrician’s filtering

While the econometrician does not observe noisy signals, she observes consumption series

such that the econometrician’s set of observables include productivity and consumption

series. The consumers’ filtering suggests that only a maximum and minimum of the range

of precisions needs to be evaluated for the ambiguity averse consumers’ belief updating.

The econometrician use this decision rule from consumers’ filtering, and the econometri-

cian’s filter as well becomes state dependent – the one with the low precision (1/σ̄2
ν) and

the one with the high precision (1/σ2
ν). The underlying mechanism for constructing the

econometrician’s filter is based on the fact that even though the econometrician does not

observe a noisy signal, she can fully recover the state (or the types of news that consumers

received) each period. The econometrician is able to determine whether beliefs have been

updated with the high or low precision using information available contemporaneously. In

fact, similar to the consumers’ cut-off rule to update beliefs, a cut-off rule to determine how
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consumers have updated beliefs at each period can be applied to the econometrician’s fil-

ter. Then, a likelihood function can be constructed accordingly, and the model is estimated

through the maximum likelihood estimation.

Proposition 5 (The econometrician’s cutoff rule) Let xt|t be the beliefs updated with

both productivity observation and a noisy signal and xt|at be the beliefs updated with pro-

ductivity observation only:

xt|t = Ê [xt|It]

xt|at = Ê
[
xt|at, xt−1|t−1,Σt−1|t−1

]
where xt|t =

(
xt|t, xt−1|t, zt|t

)′
and xt|at =

(
xt|at , xt−1|at , zt|at

)′
. Then,

1. st > xt|at ⇐⇒ ct > ct|at

2. st < xt|at ⇐⇒ ct > ct|at

where ct|at is the consumption that agents would have consumed had not observed the noisy

signal st.

Proof. See Appendix D.5.

By observing productivity, the econometrician is able to determine consumption that

consumers would have chosen to spend without observing a noisy signal, which is denoted

by ct|at . Comparing this with the observed consumption in the data and applying the cut-

off rule in Proposition 5, the econometrician can recover the types of news that consumers

received. Essentially, much like the belief updated with productivity observation (xt|at) is

used for the cut-off rule of the consumers, ct|at is similarly used for the cut-off rule of the

econometrician.

For instance, consider the case in which the observed consumption ct is greater than

ct|at . From Proposition 5 this implies that consumers must have updated beliefs with the

signal precision 1/σ̄2
ν . Intuitively, as the observed consumption is greater than the con-

sumption consumers would have consumed without having observed a (contemporaneous)

noisy signal, consumers must have received good news from this noisy signal and decided

to increase spending. At the same time, with good news, consumers must have considered

this signal not so informative.

The econometrician’s filtering can be obtained with the consumer’s filter described

in the previous section and the econometrician’s cutoff rule in Proposition 5. Let the

consumers’ belief updating be given by equation (18), and the econometrician’s state vector

be xEt = (xt, xt−1, zt, xt|t, xt−1|t, zt|t)
′
. Furthermore, let ct|at be the consumption after
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observing productivity at:

ct|at =
1

1− ρ
(
xt|at − ρxt−1|at

)
.

Then, the measurement equation for the econometrician’s state vector xEt is

xEt = QxEt−1 +RV
′

t (20)

where V
′
t = (εt, ηt, νt) and R and Q are defined by

R = (1− j)R0 + jR1,

Q = (1− j)Q0 + jQ1.

The matrices Qj and Rj depend on the realized news such that j = 0 corresponds to

the realization of good news and j = 1 indicates the realization of bad news. According to

Proposition 5, j = 0 if ct > ct|at and j = 1 if ct < ct|at . Since the econometrician observes

productivity and consumption, the observation equation is

(at, ct)
′
= TxEt (21)

where

T =

[
1 0 1 0 0 0

0 0 0 1
1−ρ

−ρ
1−ρ 0

]
The econometricians’ filtering problem can, then, be solved with (20), (21), and the

cutoff rule in Proposition 5.30

30For identification, Blanchard et al. (2013) illustrate two special cases, when the signal is perfectly
informative or when it is completely uninformative, in which a structural VAR recovers εt and ηt, and
their dynamics effects. In the presence of ambiguity, however, it is not possible, even in these special cases,
to simply rely on a structural VAR to recovers shocks in the model. First, consider the case of a fully
uninformative signal where 1/σ2

ν = 0 where the range of precisions is given by

1/σ2
ν = [0, 1/σ2

ν ]

such that agents would believe either that signal is fully uninformative or that its precision is given by
1/σ2

ν . In this case, even if the signal is useless, it may affect the agents’ belief updating. Similarly, when
the signal is fully informative such that 1/σ2

ν =∞ where the range of precision is defined by

1/σ2
ν = [1/σ̄2

ν ,∞]

agents might believe that the signal is less than fully informative depending on the types of news they
receive. This is an interesting departure from the limit case benchmark. In the limit case, if the signal is
fully informative, consumers are able to identify the permanent shock to productivity directly. However,
when information quality is given by the range of precisions, even if the signal is fully informative, consumers
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4.3.2 Structural estimation

The model is estimated through maximum likelihood where a likelihood function depends

on the types of news realized. The econometrician can fully recover the regime, i.e., whether

a noisy signal delivers good or bad news, with the contemporaneously available information

as discussed in the previous section. Therefore, the regime can be revealed in each period,

and the likelihood function can be modified to incorporate that.

Table 6: Parameter estimates, US 1970:I-2016:I

Parameter Description Value s.e.

ρ Persistence productivity 0.9754 0.0021

σu Std dev. productivity 0.0068 0.0002

σε Std dev. permanent shock (implied) 0.0002 -
ση Std dev. transitory shock (implied) 0.0067 -
σν Std dev. noise shock (lower bound) 0.0351 0.0003

σ̄ν Std dev. noise shock (upper bound) 0.0465 0.0003

σν Std dev. noise shock 0.0386 0.0020

log-likelihood 1336.15

Notes: σε and ση are obtained with random walk assumption of (8). Hence, no standard errors are given.

Consumption is constructed by taking the first difference of the logarithm of the ra-

tio of NIPA consumption to population whereas productivity is constructed by taking

the first difference of the logarithm of the ratio of GDP to employment. Real personal

consumption expenditure (PCECC96), real gross domestic product (GDPC1), population

(LNS10000000Q), and employment (LNS12000000Q) series are from 1970:I to 2016:I and

are available at the U.S. Bureau of Economic Analysis for the first two series and at the

U.S. Bureau of Labor Statistics for the next two series. Following Blanchard et al. (2013), I

remove secular drift in the consumption-to-productivity ratio from the consumption series.

Table 6 shows the estimation results with US consumption and productivity data.31

The qualitative implications of the dynamic effects of each shock are as follows. Per-

manent shocks on productivity slowly and steadily increase productivity and consumption.

Transitory shocks on productivity have slowly decreasing effects on productivity and con-

sumption while noisy shocks generate slowly decreasing effects on consumption only. The

main takeaway is that the effects are asymmetric such that as depicted in Figure 9 the

absolute size of the responses are larger for negative shocks than for positive ones.

are not able to recover the permanent shock perfectly.
31For maximum likelihood estimation I initialize the variance covariance matrix of the estimator with a

diagonal of 100.
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Table 7: Parameter estimates, US 1970:I-2016:I (the limit case)

Parameter Description Value s.e.

ρ Persistence productivity 0.9763 0.0044

σu Std dev. productivity 0.0067 0.0002

σε Std dev. permanent shock (implied) 0.0002 -
ση Std dev. transitory shock (implied) 0.0066 -
σν Std dev. noise shock 0.0436 0.0093

log-likelihood 1332.68

Notes: σε and ση are obtained with random walk assumption. As they are indirectly recovered, no standard errors are given.

The limit case, as defined in Definition 3, refers to the case in which a noisy signal is

assumed to be unambiguous. Table 7 reports the parameters obtained when estimating

the model by assuming that σν = σ̄ν . This limit case indicates that consumers are aware

of the exact signal precision and the impulse responses are symmetric to the sign of the

shocks. The estimated standard deviation of a noise shock, σ̂ν , in the limit case is shown

to lie inside the estimated range of precisions in Table 6.

Since this limit model (unambiguous signal) is a special case of the benchmark model

(ambiguous signal), a likelihood ratio test can be used to compare the goodness of fit of

the two models. Specifically, the “null” model (unambiguous signal) has 3 parameters

with a log-likelihood of 1332.68 whereas the “alternative” model (ambiguous signal) has 5

parameters with a log-likelihood of 1336.15 such that the test statistic is 2 × (1336.15 −
1332.68) = 6.94 with degrees of freedom equal to 2. Thus, the null model is rejected in

favor of the alternative model at a significance level of 0.05.

4.4 Matching observed consumption skewness

Table 8 reports the range of precisions needed to generate the observed skewness for the

U.S. consumption expenditure in the business cycle model of Cao and L’Huillier (2017),

hereafter SOE-RBC model. I first estimate the perfect information specification of the

model (Specification I), where agents perfectly identify two productivity components xt and

zt, and simulate the model to compute the model induced skewness of consumption growth.

I, then, estimate the model with learning where agents do not perfectly identify productivity

components and observe a noisy signal to learn about trend productivity (specifications II

and III), and compute the model-delivered consumption skewness. Finally, with parameter

estimates of specifications II and III, I simulate the models to recover the range of precisions

needed to match the observed consumption skewness (-0.9014).

For my estimations, following Aguiar and Gopinath (2007) and Cao and L’Huillier
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(2017), the discount factor, β, is fixed at 0.99, and ψ is set to 0.001 in specifications I and

II. In Specification III, I would calibrate two parameters to be close to the ones suggested

in Proposition 1 such that β is set to 0.9999999 and ψ is set to 1 × 10−11. For all three

specifications, the steady-state share of net-exports to GDP NX/Y is fixed at −2.0751%.

Table 8: Matching observed consumption skewness

SOE-RBC model

Data I (No delay) II (Delay) III (Limit consumption)

(1) Skewness -0.9014 -0.0005 0.0004 -0.0008

(2) Estimated σν – – 0.0023 0.0744

(3) The range of precisions – – [0.008, 0.0038] [0.0429, 0.1059]

Notes: The range of precisions is in terms of σν , and the estimated σν is used as the midpoint of the range of precisions.
To compute the model induced skewness coefficients, I simulate the model with T = 10000000. In specifications I and II,
following the previous literature, β and ψ are set to 0.99 and 0.001, respectively. In Specification III, in line with Proposition
1, I set β close to 1 and ψ close to 0. The steady-state ratio of net-exports to GDP is approximated to −2.0751% by taking
the average over the sample period.

It shows that with perfect foresight (Specifications I), the model generated consumption

skewness is very close to zero; similar results are obtained for the model with delay but

without ambiguity (specifications II and III). Line 3, then, reports the amount of ambigu-

ity required to generate observed consumption skewness (-0.9014) conditional on parameter

estimates in specifications II and III. The results show that the range of precisions needed

to match the observed consumption skewness are [0.008, 0.0038] and [0.0429, 0.1059], re-

spectively for two specifications, implying that it requires a large amount of ambiguity to

solely match the observed consumption skewness.

5 Concluding remarks

In this paper, I have focused on agents’ preferences and information structures to provide an

explanation for asymmetric consumption fluctuations. At the same time, it is important to

note that there are other explanations to generate the asymmetric response of consumption.

For example, Carroll (1992) and Carroll (1994) suggest that a household would increase

saving and raise consumption spending moderately following a positive income shock in

order to build up precautionary savings with income uncertainty. However, with a negative

income shock, a household would cut consumption spending considerably. Also, Deaton

(1991) instead focus on imperfect access to credit markets such that a household is unable

to borrow with a negative income shock, delivering the asymmetric consumption response.

Finally, the prospect theory (Kahneman and Tversky 1979) suggests that by weighting the
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prospect of losses more than that of gains, agents’ consumption response would exhibit

asymmetry due to the steeper value function for losses than gains.

As this model is deliberately simplified and does not include other mechanisms that

could potentially induce asymmetric consumption responses to the signal about productiv-

ity, it is not feasible to compare the sources of asymmetric consumption responses among

different candidates. As such, promising research program consists in allowing for other

mechanisms such as credit constraints, asymmetric shocks among others to find deeper

explanations to the source of asymmetries.
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A Constructing the data series

The following describes the data series used in this paper. The data are from the Federal

Reserve Economic Database (FRED) and span the period from the first quarter of 1970

through the first quarter of 2016. All of the series are seasonally adjusted and are quarterly

unless otherwise indicated. The two key variables of this model are constructed as follows:

(Labor) Productivity: I measure labor productivity, denoted at, as the logarithm of the

ratio of GDP to employment such that

at ≡ logAt = log Yt − logNt

where Yt is real gross domestic product (in billions of chained 2009 dollars) and Nt is the

employment level.

Consumption: I measure consumption, ct, as the logarithm of the ratio of NIPA con-

sumption to population such that

ct ≡ logCt = logConst − logPopt

where Const is real consumption expenditure (in billions of chained 2009 dollars) and Popt

is the population level at period t.

As discussed in Blanchard et al. (2013), there is an issue such that in contrast to any

balanced growth model, productivity and consumption have different growth rates over the

sample (0.32 percent per quarter for productivity, versus 0.41 percent for consumption),

which potentially reflects factors left out of this simple model. To deal with the issue, in

the empirical analysis, I allow for a secular drift in the consumption-to-productivity ratio

and remove it from the consumption series.

For the TFP variable, I use the utilization adjusted quarterly TFP series from Fernald

(2014). It measures the business section TFP less utilization of capital and labor.

B Illustration of fully rational agents’ behaviors

Throughout the paper, agents are assumed to be bounded rational such that their infor-

mation set is limited to current observation(s) and the updated belief and its associated

error variance from the last period. What are the consequences of relaxing this bounded

rationality assumption? What happens if agents take into account the implications for a

change in variance in all of his previous forecasts such that they are fully rational?

Consider the following hypothetical example, similar to the one discussed in Subsection
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2.1, in which the agent’s belief updating is characterized by

xt|t = xt|t−1 + κt(st − xt|t−1)

where the unobserved fundamental xt and the observed noisy signal st are given by

xt = xt−1 + εt

st = xt + νt

and εt and νt are i.i.d. Gaussian disturbances. To make our analysis simple, let’s consider

the case in which

κt ∈ [κ, κ̄] = [1/4, 2/3],

and agents know that x0 = 0. Similar to the example in Subsection 2.1, consumption

depends on agents’ long-run income (productivity) expectation.

Assume that the agents have observed the following noisy signals for the first three

periods:

{s1 = −1, s2 = 0, s3 = 1}.

What would, then, be the bounded rational and fully rational agents’ belief updating under

a worst case scenario?

At period t, bounded rational agents evaluate the contemporaneous signal quality, κt,

taken previous signal quality, κi, i = 1, . . . , t− 1, as given, and their belief updating under

a worst-case scenario is simply given by

x1|1 = x1|0 + κ1(s1 − x1|0)

= κ1s1 = −κ1 = −2/3

x2|2 = x2|1 + κ2(s2 − x2|1)

= −2/3 + κ2(0 + 2/3) = −2/3 + 1/4(2/3) = −1/2

x3|3 = x3|2 + κ3(s3 − x3|2)

= −1/2 + κ3(1 + 1/2) = −1/2 + 1/4(3/2) = −1/8.

such that bounded rational agents would update belief with κ1 = 2/3, κ2 = 1/4, and

κ3 = 1/4.

On the contrary, fully rational agents would evaluate all the past and present signal

quality κi, i = 1, . . . , t, simultaneously to update belief at period t, and their belief updating
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under a worst-case scenario is described as follows:

x1|1 = x1|0 + κ1(s1 − x1|0)

= κ1s1 = −κ1 = −2/3

x2|2 = x2|1 + κ2(s2 − x2|1)

= −κ2 + κ2(s2 + κ2) = −κ2 + κ2
2 = −1/4

x3|3 = x3|2 + κ3(s3 − x3|2)

= 2κ2
3 − κ3

3 = 7/64

such that fully rational agents would update belief with κ1 = 2/3, κ2 = 1/2, and κ3 = 1/4.

Figure 11 depicts the relationship between the Kalman gains and beliefs updated for each

period.
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Figure 11: Belief updating and rationality

Notes: The x-axis denotes the Kalman gain, and the y-axis denotes the updated belief is associated with a given Kalman
gain. At period 1, beliefs updated are exactly the same for both bounded and fully rational agents.

Thus, there are two important consequences arising from the assumption on agents’

rationality. First, the amount of a gain two types of agents attach to information could be

different. As previously discussed, for the bounded rational agents, the worst case evalua-

tion always corresponds to picking either the highest or the lowest information precision.

On the other hand, the fully rational agents’ belief updating may not necessarily coincide

with choosing either one of them. In addition, it is rather obvious that bounded rational

agents exhibit more pessimism (in terms of lower expectation about the future) than fully

rational agents. Intuitively, using more information to evaluate the ambiguous state of the

nature help fully rational agents resolve ambiguity with relatively less pessimism. Table

A1 reports the results of belief updating for two types of ambiguity averse agents.

Similar results are obtained when agents are assumed to be ambiguity loving or opti-

mistic. First, the Kalman gain used to update beliefs could be different for the two types
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Table A1: Worst-case belief updating for bounded rational and fully rational agents

Updated belief (xt|t) Information precision (κt)

Period Fully rational Bounded rational Fully rational Bounded rational

1 -2/3 -2/3 2/3 2/3

2 -1/4 -1/2 1/2 1/4

3 7/64 -1/8 1/4 1/4

Notes: The initial condition is given by x0 = 0, and the range of precisions is set at κ ∈ [1/4, 2/3].

of agents. Second, fully rational optimistic agents are less optimistic about the future than

their bounded rational counterparts. Table A2 reports the results of belief updating for

two types of ambiguity loving agents.

Table A2: Best-case belief updating for bounded rational and fully rational agents

Updated belief (xt|t) Information precision (κt)

Period Fully rational Bounded rational Fully rational Bounded rational

1 -1/4 -1/4 1/4 1/4

2 -3/16 -1/12 1/4 2/3

3 16/27 23/36 2/3 2/3

Notes: The initial condition is given by x0 = 0, and the range of precisions is set at κ ∈ [1/4, 2/3].

C Log-linearzation of the model in Section 3.2.

In addition to the ratio of consumption-to productivity (ĉt) and the log-deviation of con-

sumption (ct), I also define endogenous variables yt, qt, bt+1, nxt as

yt = log(Yt/Xt−1)− log(Ȳ /X̄),

qt = logQt − log Q̄,

bt+1 =
Bt+1

Xt

− B̄

X̄
,

nxt =
NXt

Yt
− N̄X

Ȳ
,

and for notational convenience, I also define the following steady state representations:

C ≡ C̄

X̄
, Y ≡ Ȳ

X̄
, B ≡ B̄

X̄
, Q ≡ Q̄, NX ≡ N̄X

Ȳ
.
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Multiplying both sides of the first order condition (13) by Xt−1:

Xt−1

Ct
= βRtÊ

[
Xt

Ct+1

Xt−1

Xt

]
leads to

ĉt = qt + ĉt+1 + ∆xt (22)

where qt = −rt.
Log-linearizing the interest-elasticity equation (12) gives

qt = −ψQbt+1, (23)

and dividing the both sides of the production function by Xt−1:

Yt
Xt−1

=
Xt

Xt−1

ZtN

leads to

yt = zt + ∆xt. (24)

To approximate the resource constraint, I start with

NXt = Bt −QtBt+1.

Diving both sides by Yt:

NXt/Yt =
Bt

Xt−1

Xt−1

Yt
−Qt

Bt+1

Xt

Xt−1

Yt

Xt

Xt−1

leads to

nxt =
1

Y
bt −

GQ

Y
bt+1 −

B

Y
GQ(qt − yt + ∆xt)−

B

Y
yt. (25)

Dividing both sides of the resource constraints by Yt:

Ct
Xt−1

Xt−1

Yt
+
NXt

Yt
= 1

leads to
C

Y
(ĉt − yt) + nxt = 0 (26)

Substituting nxt from (25) into (26), I get

C

Y
(ĉt − yt) +

1

Y
bt −

GQ

Y
bt+1 −

B

Y
GQ(qt − yt + ∆xt)−

B

Y
yt = 0. (27)
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Thus, the equilibrium is given by the productivity processes (5), (6), and (7), the noisy

signal (9), and the five log-linearized equations (14), (22), (23), (24), and (27).

C.1 Steady states

The following steady state relations hold:

Q = β

(1− β)
B

Y
= 1− C/Y

D Proofs

D.1 Equations (15) and (16)

Proof. Productivity is assumed to have two components, a permanent component xt and

a transitory component zz:

at = xt + zt

and since consumption depends on agents’ beliefs about the long-run under a worst-case

belief, it can be solved by

ct = lim
j→∞

Êt [at+j] = lim
j→∞

Êt [xt+j + zt+j]

such that

ct = lim
j→∞

Êt [∆xt+j + ∆xt+j−1 + · · ·+ ∆xt+1 + xt + zt+j]

= lim
j→∞

Êt
[
ρj∆xt+1 + ρj∆xt + · · ·+ ∆xt+1

]
+ lim

j→∞
Êt [xt] + + lim

j→∞
Êt
[
ρj+1zt

]
= xt|t + ρ lim

j→∞
Êt
[(

1 + ρ+ · · ·+ ρj
)

∆xt
]

= xt|t +
ρ

1− ρ
Êt [∆xt]

= xt|t +
ρ

1− ρ
(
xt|t − xt−1|t

)
=

1

1− ρ
(
xt|t − ρxt−1|t

)
where xt|t = Êt [xt] and xt−1|t = Êt [xt−1] are the worst case beliefs on current and lagged

permanent productivity.
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D.2 Proposition 1

Proof.

First, I define a new variable b̂t:

b̂t = bt +Bxt−1,

and using the definition of the log-deviation of consumption (14), I make the following

conjecture:

ct = Dbb̂t +Dxxt

= Dbb̂t +Dx,1xt +Dx,2xt−1 +Dx,3zt (28)

where xt = [xt, xt−1, zt]
′
. I claim that as the interest rate goes to one in the steady

state (β → 1) and the interest rate becomes insensitive to debt-holding (ψ/(1 − β) → 0),

consumption ct is only a function of belief about the long-run under a worst-case belief:

ct =
1

1− ρ

(
Êt [xt]− ρÊt [xt−1]

)
.

In other words, I show that as β → 1 and ψ
(1−β)

→ 0,

lim
β→1

lim
ψ→0

Db = 0,

lim
β→1

lim
ψ→0

Dx,1 =
1

C/Y

1

1− ρ
,

lim
β→1

lim
ψ→0

Dx,2 =
1

C/Y

−ρ
1− ρ

,

lim
β→1

lim
ψ→0

Dx,3 = 0.

From (24) and (27), I have

0 = Y (zt + ∆xt) + βB(∆xt − ψβbt+1) + βbt+1 − bt − Cĉt

and with the definition of ct and b̂t, I get

b̂t+1 =
1

(1− ψβB)β

[
b̂t + Cct − Y zt − (Y + βBψβB)xt

]
(29)
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The Euler equation (22) and the debt equation (23) imply that32

ĉt+1 − ĉt + ∆xt − ψQbt+1 = 0

which by using the definition of ct and b̂t becomes

ct+1 − ct − ψβb̂t+1 + ψβBxt = 0 (30)

Using the conjecture (28), (30) becomes

(Db − ψβ)̂bt+1 +DxAxt + ψβBxt − ct = 0

and combined with (29)[
1− (Db − ψβ)C

(1− ψβB)β

]
ct =

(Db − ψβ)

(1− ψβB)β

(
b̂t − Y zt

)
+DxAxt +Kxt (31)

where

K = −
[

(Db − ψβ)

(1− ψβB)β
(Y + βBψβB)

]
+ ψβB

and

A =

 1 + ρ −ρ 0

1 0 0

0 0 ρ


Rearranging (31) leads to

(1− x̄) ct =
x̄

C
b̂t −

x̄

C
Y zt +DxAxt −

[ x̄
C

(Y + βBψβB)
]
xt + ψβBxt (32)

where

x̄ =
(Db − ψQ)C

(1− ψQB)GQ

Finding Db in the limit leads to Db = 0.33

32For the sake of convenience, I remove the expectation term and write ĉt+1 instead of Êt[ĉt+1].
33I get the following quadratic equation in Db:

D2
b +

[
1

C
− (1− ψβB)

β

C
− ψβ

]
Db −

ψβ

C
= 0

where I pick the negative root to ensure the stability of the dynamic system and in the limit Db → 0:

Db =
−
(

1
C − (1− ψβB) β

C − ψβ
)
−
√(

1
C − (1− ψβB) β

C − ψβ
)2

+ 4ψβ
C

2
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From (32), collecting the terms for xt:

(1− x̄)Dx,1 = − x̄
C

(Y + βBψβB) + ψβB + (1 + ρ)Dx,1 +Dx,2 (33)

Similarly, collecting the terms for xt−1:

(1− x̄)Dx,2 = −ρDx,1 (34)

Finally, for zt:

(1− x̄)Dx,3 = ρDx,3

Thus, Dx,3 = 0 and from (34)

Dx,2 =
−ρ

1− x̄
Dx,1

Substituting Dx,2 into (33),

(1− x̄)Dx,1 = − x̄
C

(Y + βBψβB) + ψβB + (1 + ρ)Dx,1 −
ρ

1− x̄
Dx,1

Then, I can solve for Dx,1:

Dx,1 =

(
1− x̄

1− ρ− x̄

)(
1

x̄

)[ x̄
C

(Y + βBψβB)− ψβB
]

With the limit conditions,

lim
β→1

lim
ψ→0

Dx,1 =

(
1− x̄

1− ρ− x̄

)(
1

C

)
(Y + βBψβB)−

(
1− x̄

1− ρ− x̄

)(
1

x̄

)
ψβB

=
1

C/Y

(
1

1− ρ

)
(35)

For C = 1 in the limit:

Db =
− (1− 1− 0)−

√
(1− 1)

2
+ 0

2

Similarly, for C 6= 1 in the limit:

Db =
−
(

1
C −

1
C

)
−
√(

1
C −

1
C

)2
+ 0

2
= 0
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as
(

1−x̄
1−ρ−x̄

) (
1
x̄

)
ψβB goes to zero in the limit.34 Given Dx,1 in (35), with the limit condi-

tions, I find Dx,2:

lim
β→1

lim
ψ→0

Dx,2 = lim
β→1

lim
ψ→0

−ρ
(1− x̄)

Dx,1 =
1

C/Y

(
−ρ

1− ρ

)
Thus, it shows that Proposition 1 holds and when C/Y = 1:

ct =
1

1− ρ

(
Êt [xt]− ρÊt [xt−1]

)

D.3 Proposition 2

Proof. Conditional on xt|at , consumers’ filtering is given by

xt|t = xt|at +Gt(st − st|at) (36)

= xt|at +Gtst −GtC1xt|at

= [I −GtC1]xt|at +Gtst (37)

where Gt is the Kalman gain for the following system of equations:

xt = Axt−1 +BVt

st = C1xt +D1Wt

34In the limit,
1− x̄

1− ρ− x̄
=

1

1− ρ
.

Thus, only need to show that 1
x̄ψβB → 0 in the limit. Using the definition of x̄, I have

1

x̄
ψβB =

(1− ψβB)β

(Db − ψβ)C

(
1− C
1− β

)
ψβ

As Db = 0 in the limit, I have

ψβ (1− C) (1− ψβB)β

−ψβC(1− β)
= −1− C

C

(
(1− ψβB)βψβ

1− β

)
= 0

as long as C 6= 0. Since (1−ψβB)βψβ
1−β → 0 and 1−C

C ≤ ∞.
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and xt = (xt, xt−1, zt)
′, Vt = (εt, 0, ηt)

′, Wt = νt, D1 = 1,

A =

1 + ρ −ρ 0

1 0 0

0 0 ρ

 B =

1 0 0

0 0 0

0 0 1

 C1 =
[
1 0 0

]

Similarly, conditional on xt|t−1, xt|at is given by

xt|at = xt|t−1 +H(at − at|t−1)

= Axt−1|t−1 +Hat −HC2Axt−1|t−1

= [I −HC2]Axt−1|t−1 +Hat (38)

where H is the Kalman gain for the following system of equations

xt = Axt−1 +BVt

at = C2xt +D2Wt

and xt = (xt, xt−1, zt)
′
, Vt = (εt, 0, ηt)

′
, Wt = νt, D2 = 0,

A =

1 + ρ −ρ 0

1 0 0

0 0 ρ

 B =

1 0 0

0 0 0

0 0 1

 C2 =
[
1 0 1

]

Substituting xt|a,t from (38) into (37)

xt|t = [I −GtC1][I −HC2]Axt−1|t−1 + [I −GtC1]Hat +Gtst

D.4 Proposition 3 and 4

Proof. From (36), I have

xt|t = xt|at +Gt(st − st|at)

where Gt is a 3 × 1 column vector such that Gi
t is the Kalman gain associated with the

i-th component of xt|t. For example, G1
t is the gain of observing the noisy signal st on

xt|t. Furthermore, G = ΣXC
′
1[C1ΣXC

′
1Rt]

−1 where Rt = V ar(Wt) = σ2
ν(t) and ΣX =
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V art−1(xt):
35

ΣX =

Σ11 Σ12 Σ13

Σ21 Σ22 Σ23

Σ31 Σ32 Σ33


where Σii is the V art−1(xi,t) and Σij is the Covt−1(xi,t,xj,t). With a little bit of algebra,

each component of G can be defined by

G1
t = Σ11(Σ11 + σ2

ν(t))
−1 (39)

G2
t = Σ21(Σ11 + σ2

ν(t))
−1 (40)

G3
t = Σ31(Σ11 + σ2

ν(t))
−1

Since Σ11 > 0, 0 < ρ < 1, and (Σ11 + σ2
ν(t))

−1 > 0, G1
t > 0 such that if st >

st|at , xt|t − xt|at > 0 and that if st < st|at , xt|t − xt|at < 0. Similarly, as Σ21 > 0 and

(Σ11 + σ2
ν(t))

−1 > 0, G2
t > 0 such that if st > st|at , xt−1|t − xt−1|at > 0 and that if st < st|at ,

xt−1|t − xt−1|at < 0. Finally, given that Σ31 = 0, G3
t = 0 such that zt|t − zt|at = 0, ∀ st and

st|at .

For consumption, ct and ct|at are given by

ct =
1

1− ρ
(
xt|t − ρxt−1|t

)
(41)

ct|at =
1

1− ρ
(
xt|at − ρxt−1|at

)
Substituting xt|t and xt−1|t from (36) into (41) gives

ct =
1

1− ρ
(
xt|t − ρxt−1|t

)
=

1

1− ρ
(
xt|at +G1

t (st − st|at)− ρxt−1|at − ρG2
t (st − st|at)

)
= ct|at +

1

1− ρ
(
(st − st|at)(G1

t − ρG2
t )
)

(42)

From (39) and (40), it gives

G1
t − ρG2

t = Σ11(Σ11 + σ2
ν(t))

−1 − ρΣ21(Σ11 + σ2
ν(t))

−1

= (Σ11 − ρΣ21)(Σ11 + σ2
ν(t))

−1

As Σ11 > Σ21 and 0 < ρ < 1, G1
t − ρG2

t > 0. Therefore, when st > st|at , the second

35Since εt⊥νt+j , ηt⊥νt+j ,∀j, Σ13 = Σ23 = Σ31 = Σ32 = 0.
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term on the right-hand side of (42) is positive and when st < st|at , it is negative. Thus, if

st > st|at , ct − ct|at > 0. Similarly, if st < st|at , ct − ct|at < 0.

From (42) when st − st|at > 0, G1
t − ρG2

t should be as small as possible to minimize ct.

Since G1
t − ρG2

t = (Σ11 − ρΣ21)(Σ11 + σ2
ν(t))

−1, it is such that σν = σ̄ν . Similarly, when

st− st|at < 0, minimizing ct requires that G1
t − ρG2

t takes the largest possible values. Thus,

when st − st|at < 0, σν = σν .

This completes the proof of Proposition 3 and Proposition 4.

D.5 Proof to Proposition 5

Proof. Rewrite equation (42):

st − st|at =
1− ρ

G1
t − ρG2

t

(
ct − ct|at

)
Since 1−ρ

G1
t−ρG2

t
> 0, ct − ct|at and st − st|at should have the same sign: if ct > ct|at , st > st|at

and if ct < ct|at , st < st|at .

E Sequential belief updating under ambiguity

Updating beliefs sequentially or simultaneously makes no difference on ex-post revised

beliefs when the quality of information is certain. However, under ambiguity, such claim

may not necessarily be materialized.

The aim of this section is two-fold. First, I show that the simultaneous and sequen-

tial belief updating do not necessarily generate identical revised beliefs under ambiguity.

Second, I show that the simultaneous belief updating under ambiguity can be described

as updating beliefs sequentially when the agents first update beliefs with an unambiguous

signal. The discussion is based on the case in which there are two signals and one of which

is ambiguous. But it is easy to generalize the discussion with N signals where N > 2 and

there are N − 1 unambiguous signals.

Let the process x ∼ N(θ, σ2
x) and agents receive two signals about x:

a = x+ η

s = x+ ν,

where η and ν are i.i.d. Gaussian shocks such that η ∼ N(0, σ2
η), ν ∼ N(0, σ2

ν). Agents

update beliefs about x with the two signals. The key assumption here is that the signal s

is ambiguous such that σ2
ν ∈ [σ2

ν , σ̄
2
ν ].

50



Consider the three alternative belief updating schemes. First, agents update beliefs first

with the unambiguous signal and then with the ambiguous signal. Second, agents update

beliefs simultaneously. Finally, agents first update beliefs with the ambiguous signal and

then with the unambiguous signal.

E.1 Sequential updating [seq-1]:

Assume that agents update beliefs sequentially - first with the unambiguous signal and

then with the ambiguous signal. Conditional on an ex-ante expectation on x, initial step is

to update belief with the observed signal a. For simplicity, assume that the agents’ utility

is strictly increasing in x.36 and agents maximize the multiple priors utility:

max
x∈X

min
ω∈Ω

E [u(x;ω)]

where the set Ω, the priors, is on the range of precisions such that Ω = [1/σ̄2
ν , 1/σ

2
ν ]

and ∂u/∂x > 0. While the agents’ utility is strictly increasing in x, it also depends on

the ambiguity parameter ω as a belief on x is a function of a signal precision. Then, the

maxmin operation suggests that ω which minimizes the expected utility is chosen to satisfy

agent’ aversion toward ambiguity.

The procedure to update beliefs is summarized as follows.

updating with a: the updating beliefs with a is given by

x|a =
σ2
η

σ2
x + σ2

η

θ +
σ2
x

σ2
x + σ2

η

a (43)

V ar(x|a) = σ2
xη =

σ2
xσ

2
η

σ2
x + σ2

η

In other words, the revised belief with the first signal is just a weighted average of an

ex-ante expectation (the unconditional expectations of x) and the observed signal where

the weights depends on the precision of fundamental and the noise.

updating with s: conditional on x|a, the updating beliefs with the ambiguous signal is

given by

x|a, s = x|a+

(
σ2
xη

σ2
xη + σ2

ν

)
(s− x|a) (44)

36The results may not hold if U is a non-monotonic function of x.
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Since x|a and σ2
xη do not depend on σ2

ν , the following simple cut-off rule can be applied

to update beliefs:

Proposition 6 With sequential belief updating, when s > x|a, agents update beliefs with

σ2
ν = σ̄2

ν . When s < x|a, agents update beliefs with σ2
ν = σ2

ν .

Proposition 6 can be proved just by checking the second term in the right-hand side

of (44). When the observed signal s is greater than x|a, the weight attached to the signal

should be as small as possible since the weight is inversely related to σ2
ν such that σ2

ν = σ̄2
ν .

Same logic applies when s < x|a.

Intuitively, in terms of comparison between the signal observed (s) and the agents ex-

ante expectations (x|a), when good news arrives, agents are hesitant to believe that the

signal is precise. On the contrary, when bad news are delivered, agents would believe that

the signal is very informative.

E.2 Simultaneous updating [sim]:

Agents update beliefs with the signals S = (a, s)′ where

S = Ax+ ε

with A = [1, 1]
′
, ε = [η, ν]

′
. V = V ar(ε) is a diagonal matrix with σ2

η and σ2
ν being the

diagonal components. Then, the updating of beliefs is given by

x|S =
σ2
νσ

2
η

σ2
xσ

2
ν + σ2

xσ
2
η + σ2

νσ
2
η

θ +
σ2
xσ

2
η

σ2
xσ

2
ν + σ2

xσ
2
η + σ2

νσ
2
η

s+
σ2
xσ

2
ν

σ2
xσ

2
ν + σ2

xσ
2
η + σ2

νσ
2
η

a (45)

where the multiplicative terms for s and a are relative gains of observing the signal s and

a, respectively, and σ2
ν is chosen to minimize x|S. Let s̃ = s− θ and ã = a− θ, then (45)

becomes

x|S = θ +
σ2
xσ

2
η

σ2
xσ

2
ν + σ2

xσ
2
η + σ2

νσ
2
η

s̃+
σ2
xσ

2
ν

σ2
xσ

2
ν + σ2

xσ
2
η + σ2

νσ
2
η

ã

Lemma 1 x|S is a monotonic function of σ2
ν .

Proof. To prove Lemma 1, it is sufficient to show that ∂x|S
∂σν

does not change the sign

for ∀σ2
ν ∈ [σ2

ν , σ̄
2
ν ] given Ψ = {σ2

x, σ
2
η, θ, s, a}. Taking the derivative of x|S with respect to
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σ2
ν ,

∂x|S
∂σ2

ν

=
(
σ2
xσ

2
ν

)
s̃
(
σ2
xσ

2
ν + σ2

xσ
2
η + σ2

ησ
2
ν

)−2
(−1)

(
σ2
x + σ2

η

)
+

+
(
σ2
xσ

2
ν

)
ã
(
σ2
xσ

2
ν + σ2

xσ
2
η + σ2

ησ
2
ν

)−2
(−1)

(
σ2
x + σ2

η

)
+

+ σ2
xã
(
σ2
xσ

2
ν + σ2

xσ
2
η + σ2

ησ
2
ν

)−2 (
σ2
xσ

2
ν + σ2

xσ
2
η + σ2

ησ
2
ν

)
=

σ4
xσ

2
η (ã− s̃)− σ2

xσ
4
η s̃(

σ2
xσ

2
ν + σ2

xσ
2
η + σ2

ησ
2
ν

)2 (46)

From (46), it is easy to see that the denominator is always positive while the numerator

can either be positive or negative depending on the parameters. As σ2
ν does not enter into

numerator, the sign of ∂x|S/∂σ2
ν does not depend on σ2

ν . x|S, therefore, is a monotonic

function of σ2
ν .

Proposition 7 With the simultaneous belief updating, agents update beliefs as if they do

it sequentially described in Proposition 6. Specifically, when s > x|a, agents update beliefs

with σ2
ν = σ̄2

ν . When s < x|a, the agents update beliefs with σ2
ν = σ2

ν .

Proof. From (43), x|a can be written as x|a = θ+
(

σ2
x

σ2
x+σ2

η

)
ã, where, as before, ã = a−θ.

It is sufficient to show that when s > x|a, ∂x|S
∂σ2
ν
< 0, whereas when s < x|a, ∂x|S

∂σ2
ν
> 0. Since

the denominator of (46) is always positive, I only need to consider the numerator of (46),

which is

σ4
xσ

2
η (ã− s̃)− σ2

xσ
4
η s̃ (47)

Divide (47) by σ2
xσ

2
η gives

σ2
xã−

(
σ2
x + σ2

η

)
s̃ (48)

Dividing (48) by (σ2
x + σ2

η) gives

σ2
x(

σ2
x + σ2

η

) ã− s̃
Therefore, the sign of ∂x|S

∂σ2
ν

depends on whether s is greater or less than
[
σ2
x/
(
σ2
x + σ2

η

)]
ã.

Since the denominator of (46) is always positive when σ2
x

(σ2
x+σ2

η)
ã > s̃,

∂x|S
∂σ2

ν

> 0
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On the contrary, when σ2
x

(σ2
x+σ2

η)
ã < s̃,

∂x|S
∂σ2

ν

< 0

The first case coincides with s < x|a and the second case with s > x|a. Since x|S is

a monotonic function and ∂x|S
∂σ2
ν
< 0, when s > x|a, agents update beliefs with σ2

ν = σ̄2
ν .

Similarly, when s < x|a, agents update beliefs with σ2
ν = σ2

ν .

Thus, simultaneously updating beliefs can be represented as sequentially updating be-

liefs [seq-1] described in the previous section.

E.3 Sequential updating [seq-2]:

Consider the case in which agents update beliefs first with the ambiguous signal and then

with the unambiguous signal.

updating with s: the updating of beliefs with s can be given by

x|s = θ +
σ2
x

σ2
x + σ2

ν

(s− θ)

V ar(x|s) = σ̂2
xs =

σ2
xσ

2
ν

σ2
x + σ2

nu

Therefore, the following cutoff criteria would apply to update beliefs:

s > θ ⇒ σ2
ν = σ̄2

ν (49)

s < θ ⇒ σ2
ν = σ2

ν (50)

updating with a: conditional on x|s, updating beliefs with the unambiguous signal a

can be given by

x|s, a =
σ2
η

σ̂2
xs + σ2

η

x|s+
σ̂2
xs

σ̂2
xs + σ2

η

a

where σ̂2
xs and x|s are chosen with cutoff rule in (49) and (50).

Proposition 8 Updating beliefs sequentially defined as above (seq-2 ) does not necessarily

produce the identical updated beliefs as in the other schemes.
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Belief updating under ambiguity crucially depends on how agents apply cut-off rules.

In the previous two cases (sim and seq-1 ), the cutoff rules apply with the reference level

s = x|a. However, in seq-2, the reference level to apply cut-off rule is s = θ. Unless x|a = θ,

therefore, the updated beliefs (in seq-2 ) are not the same as the ones obtained from the

other cases.

F Econometrician’s filtering

Let the state vector xt|at be given by

xt|at = (xt|at , xt−1|at , zt|at)
′

and the dynamics of consumers’ beliefs on xt|at be summarized by xt|at

xt−1|at

zt|at

 = [I −HC2]A

xt−1|t−1

xt−2|t−1

zt−1|t−1

+H
[
1 + ρ −ρ −ρ

]xt−1

xt−2

zt−1

+Hεt +Hηt

where A and C2 are given in Proposition 2 and H represents the gains of observing pro-

ductivity. Similarly, conditional on expectations xt|at , the econometrician’s state vector xt|t

becomes xt|t

xt−1|t

zt|t

 = [I −GtC1]

 xt|at

xt−1|at

zt|at

+Gt

[
1 + ρ −ρ 0

]xt−1

xt−2

zt−1

+Gtεt +Gtηt +Gtνt

where C1 is given in Proposition 2 and Gt represents the gains of observing a noisy signal

at period t. Substituting xt|at into xt|t, it gives xt|t

xt−1|t

zt|t

 = A

xt−1|t−1

xt−2|t−1

zt−1|t−1

+B

xt−1

xt−2

zt−1

+ [[I −GtC1]H +Gt] εt+ [[I −GtC1]H +Gt] ηt+Gtνt

where

A = [I −GtC1] [I −HC2]A

and

B =
(
H
[
1 + ρ −ρ −ρ

]
+Gt

[
1 + ρ −ρ 0

])

55



Denoting the econometrician’s state vector as xEt such that

xEt =
(
xt, xt−1, zt, xt|t, xt−1|t, zt|t

)
the transition equation can be summarized by

xEt = QxEt−1 +R (εt, ηt, νt) (51)

where Q and R are given respectively by

Q =



1 + ρ −ρ 0

1 0 0 0

0 0 ρ

Q̄ A



R =



1 0 0

0 0 0

0 1 0

R̄


with

Q̄ = B

[
1 + ρ −ρ ρ

1 + ρ −ρ 0

]
and

R̄ = B

[
1 + ρ 0 0

1 + ρ 0 0

]
+ B

[
1 + ρ 0 0

1 + ρ 0 0

]
+ B

[
1 + ρ 0 0

1 + ρ 0 0

]
As the econometrician observes productivity at and consumption ct, the observation

equation is

(at, ct) = TxEt (52)

where

T =

[
1 0 1 0 0 0

0 0 0 1/ (1− ρ) ρ/ (1− ρ) 0

]
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Thus, the econoemtrician’s filtering problem can be solved by (51) and (52) and the

decision rule stated in Proposition 5.
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