Capital Control Policy in a Small Open Economy with Financial Frictions

Yongseung Jung, Soyoung Kim and Doo Yong Yang

Kyunghee University and Seoul National University

April 2017

- Introduction
- 2 Empirical Analysis
- Model
- Conclusion

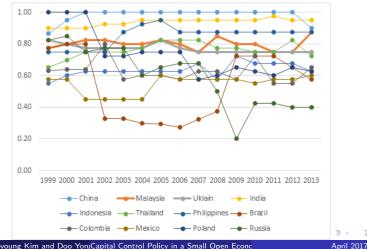
- Two policy options in emerging market economies to cope with vollatile capital flows: capital control and exchange rate managment
- Capital control in Asia:
 - China: Restriction on foreign borrowing in bank
 - Thailand: URR leads a sharp decline in fixed-income portfolio in 2006
 - Korea: Restriction on foreign and domestic banks' dollar borrowing and transactions on FX derivatives

Recent Views on Capital Controls and exchange rate management...

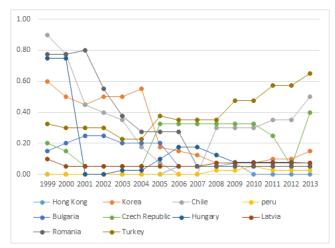
- Schmitt-Grohe and Uribe (2012)
- Farhi and Werning (2012)
- Costinot, Lorenzoni, and Werning (2011) and De Paoli and Lipinska (2013)
- Korinek (2011), Jeanne and Korinek (2010), Bianchi and Mendoza (2013), Bianchi (2011), Benigno, Chen, Otrok, Rebucci, and Young (2013), and Korinek (2013)
- Optimal monetary policy with exchange rate regime: Clarida et al. (2000), Lubik and Schorfheide (2007), and Svensson (2000), De Paoli (2009)

Recent Views on Capital Controls and exchange rate management...

- Dilemma not trilemma (Rey 2013)
- Farhi and Werning (2013): capital control is a Pareto imrovemnt even with flexible exchange rate regime
- Kim and Yang (2012)


We focus on empirical analysis of the impacts of various external shocks (US shocks) to selected EMEs

• 4 different group of EMEs

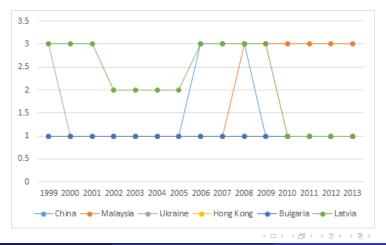

Empirical Analysis

Degree of Capital Controls

Figure: Higher Capital Control Countries

Figure: Lower Capital Control Countries

Yongseung Jung, Soyoung Kim and Doo Yon(Capital Control Policy in a Small Open Econc


э

- 一司

Empirical Analysis

• Rigid Exchange Rate Regime

Figure: Fixed Exchange Rate Regime Countries

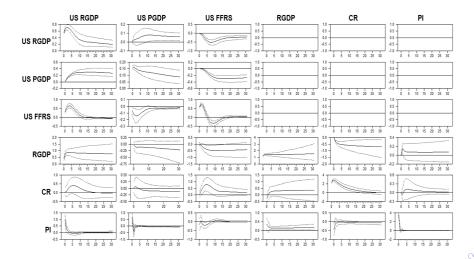
• 2X2 Classification

Table: Classification of EMEs

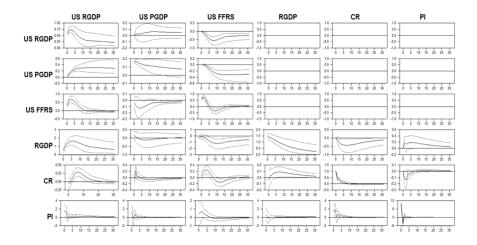
	Higher Capital Control	Lower Capital Control
Fixer	China, Malysia, Ukraine Hong Kong, Bulgaria, Latvia	
Floater	India, Indonesia, Thailand, Philippines	Korea, Chile, Peru, Czech Republic,
	Brazil, Columbia, Mexico, Poland, Russia	Romania, Turkey, Hungary,

$$G(L) y^{i}(t) = d^{i} + e^{i}(t), \quad i = 1, 2, \dots, I$$
(1)

$$y^{i}(t) = \begin{bmatrix} y_{1}(t) \\ y_{2}^{i}(t) \end{bmatrix}, \quad G(L) = \begin{bmatrix} G_{11}(L) & 0 \\ G_{21}(L) & G_{22}(L) \end{bmatrix},$$
$$d^{i} = \begin{bmatrix} d_{1} \\ d_{2}^{i} \end{bmatrix}, \quad e^{i}(t) = \begin{bmatrix} e_{1}(t) \\ e_{2}^{i}(t) \end{bmatrix}$$
(2)


$$y^{i}(t) = c^{i} + B(L)y^{i}(t-1) + u^{i}(t), i = 1, 2, \dots I$$
 (3)

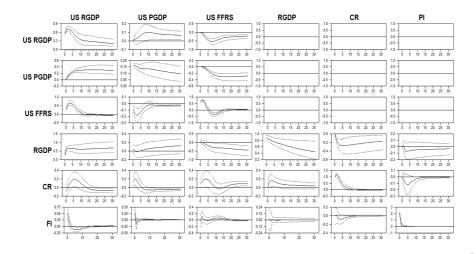
$$B(L) = \begin{bmatrix} B_{11}(L) & 0\\ B_{21}(L) & B_{22}(L) \end{bmatrix}, \quad c^{i} = \begin{bmatrix} c_{1}\\ c_{2}^{i} \end{bmatrix}, \quad u^{i}(t) = \begin{bmatrix} u_{1}(t)\\ u_{2}^{i}(t) \end{bmatrix} \quad (4)$$


э

・ロト ・ 日 ト ・ 日 ト ・

Figure: Impulse Responses of G-4 to the US shocks

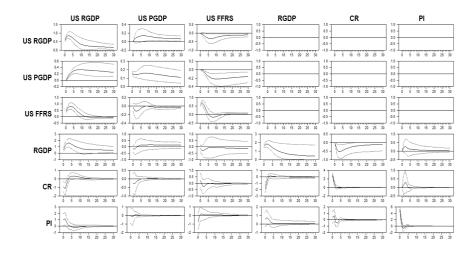
Figure: Impulse Responses of G-3 to the US shocks



April 2017 13 / 1

< 🗇 🕨

(3)


Figure: Impulse Responses of G-2 to the US shocks

Yongseung Jung, Soyoung Kim and Doo YongCapital Control Policy in a Small Open Econc

April 2017 14 / 1

Figure: Impulse Responses of G-1 to the US shocks

Yongseung Jung, Soyoung Kim and Doo YongCapital Control Policy in a Small Open Econc

April 2017 15 / 1

- ∢ 🗗 🕨

3 🕨 🖌 3

Household

$$E_t \left[\sum_{i=0}^{\infty} \beta^i \left(\log C_t - \frac{H_t^{1+\nu}}{1+\nu} \right) \right], \ \sigma \neq 1, \ 0 < \beta < 1.$$

$$C_t = \left[\int_0^1 C_t(j)^{\frac{\phi-1}{\phi}} dj \right]^{\frac{\phi}{\phi-1}},$$
(6)

3

・ロ・ ・ 日・ ・ 田・ ・

Household

$$C_t(j) = \left[\frac{P_t(j)}{P_t}\right]^{-\phi} C_t, \tag{7}$$

・ロト ・回ト ・ヨト ・

$$P_{t}C_{t} + B_{H,t} + S_{t}B_{F,t}^{*} \leq R_{t-1}B_{H,t-1} + S_{t}\Psi_{t-1}R_{t-1}^{*}(1 + \tau_{B,t-1})\Theta(\frac{S_{t}B_{F,t-1}^{*}}{P_{t-1}})B_{F,t-1} \qquad (8)$$
$$+W_{t}(1 - \tau_{t})N_{t} + TR_{t}.$$

3

- Firm: domestic firms, importing firms, capital producers
 - Domestic Firms

$$Y_t(j) \le A_t K_t(j)^{\gamma} H_t(j)^{1-\gamma}, \tag{9}$$

$$V_t = \gamma M C_t \frac{Y_t(j)}{K_t(j)},$$

$$W_t = (1 - \gamma) M C_t \frac{Y_t(j)}{H_t(j)},$$
(10)

• Domestic Firms

$$\max E_t \{ \sum_{k=0}^{\infty} \alpha^k Q_{t,t+k} [\overline{P}_{Ht,t} Y_{t,t+k}(j) - MC_{t+k} Y_{t,t+k}(j)] \},$$
(11)

subject to

$$Y_{t,t+k}(j) = \left(\frac{\overline{P}_{H,t}}{P_{Ht,t+k}}\right)^{-\phi} Y_{t+k},$$
$$P_{H,t}^{1-\phi} = (1-\alpha)\overline{P}_{Ht,t}^{1-\phi} + \alpha P_{H,t-1}^{1-\phi}.$$
(12)

• • • • • • • • • • • •

Yongseung Jung, Soyoung Kim and Doo YongCapital Control Policy in a Small Open Econc

э

• Importing Firms: no price setting role as law of one price holds

$$P_{F,t}(j) = \mathcal{S}_t P_{F,t}^*(j). \tag{13}$$

• Capital Producers

$$K_{t+1} = (1 - \delta_k)K_t + \Phi(I_t, I_{t-1}) = K_{it} + (1 - F(I_t/I_{t-1}))I_t, \quad (14)$$

$$\max_{\{I_{t+j},K_{t+j}\}} E_t \left[\sum_{j=0}^{\infty} \beta^j \Lambda_{t+j} \left(Q_{kt+j} K_{kt+j} + (1 - F(I_{t+j}/I_{t+j-1})) I_{t+j} - Q_{kt+j} \right) \right] = 0$$

$$Q_{kt}F'(\frac{I_t}{I_{t-1}})\frac{I_t}{I_{t-1}} + \beta E_t[\frac{\Lambda_{t+1}}{\Lambda_t}Q_{kt+1}F'(\frac{I_{t+1}}{I_t})\frac{I_{t+1}}{I_t}] = 1.$$
(15)

э

・ロト ・ 日 ト ・ 日 ト ・

• Financial contract

$$L_t / P_t = Q_{kt} K_{kt+1} - N_t.$$

$$E_t [R_{t+1}^e] = E_t \left[\frac{r_{kt+1} + (1 - \delta_k) Q_{kt+1}}{Q_{kt}} \right], \quad (16)$$

Yongseung Jung, Soyoung Kim and Doo YongCapital Control Policy in a Small Open Econc

э

• Financial intermediaries: domestic borrowing

$$E_{t}[R_{t+1}^{e}] = (1 + \chi_{t})E_{t}\left[\frac{R_{t}}{\pi_{t+1}}\right], \qquad (17)$$

where $\chi_{t} = \chi\left(\frac{N_{t}}{Q_{kt}K_{t+1}}\right), \ \chi'(.) > 0 \text{ and } \chi(0) = 0.$
$$N_{t} = \theta\left[R_{t}^{e}Q_{kt-1}K_{t} - [\frac{R_{t-1}}{P_{t}/P_{t-1}}]\frac{L_{t}}{P_{t-1}}\right] + (1 - \theta)D_{t}^{e}, \qquad (18)$$

- 一司

• Financial intermediaries: foreign borrowing

$$S_t L_t / P_t = Q_{kt} K_{kt+1} - N_t.$$
 (19)

$$E_t[R_{t+1}^e] = (1 + \chi_t)E_t\left[\frac{S_{t+1}P_tR_t^*}{S_tP_{t+1}}\right].$$
(20)

Finally, the evolution of entrepreneurs's net worth, N_{it+1} is given by

$$N_{t} = \theta \left[R_{t}^{e} Q_{kt-1} K_{t} - \left[\frac{S_{t} \Psi_{t-1} R_{t-1}^{*} (1 + \tau_{B,t-1}) \Theta(.)}{S_{t-1} P_{t} / P_{t-1}} \right] \frac{S_{t-1} L_{t}}{P_{t-1}} \right] + (1 - \theta) D_{t}^{e}$$
(21)

• Quantitative Evaluation

Parameter	Values	Description and definitions
e	11	Elasticity of demand for a good with respect to its own price
σ	2	Relative risk aversion parameter
η	1	Elasticity of substitution between home and foreign goods
v	1	Inverse of elasticity of labor supply
η _F	0.02	The elasticity of the country spread to net foreign asset
$1 - \theta_i$	0.0272	Entrepreneur's death rate
N _{ss} / K _{ss}	1.2	Leverage ratio
rp	0.0035	Risk spread or External finance spread
$\bar{\alpha_i}(i = H, N, M)$	0.75	Probability of the price not adjusting
$F^{-1'}$	2	Elasticity of the price of capital to investment
r	0.016	Steady state real interest rate

Table: Parameter Values

• No Capital Controls and No Finanical Frictions

Figure: Impulse Response to a Risk Premium Shock with No Financial Frictions

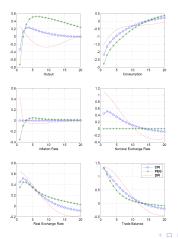


Figure: Impulse Response Function to a Risk Premium Shock under DPI rule

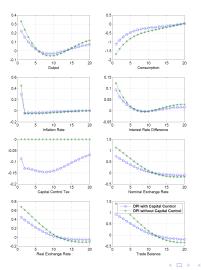
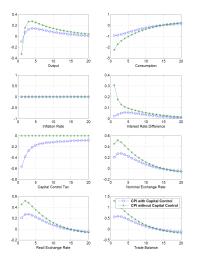
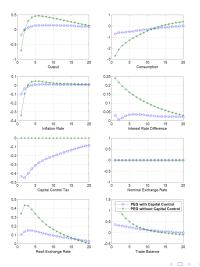




Figure: Impulse Response Function to a Risk Premium Shock under CPI rule

April 2017 28 / 1

Figure: Impulse Response Function to a Risk Premium Shock under PEG rule

- EMEs responded capital flows regardless of exchange rate regimes.
- Flexible exchange rate regime with less capital control policy is not the best policy in EMEs to deal with volatile capital flows.
- Capital control policy is countercyclical.
- Combined policy options with fixed and capital control is a better option in EMEs when we have a financial frictions.