The Effect of the Top Marginal Tax Rate on Top Income Inequality

Jihee Kim

KAIST

January 11th, 2017
Korea Institute for International Economic Policy

Outline

1. Facts
2. Pareto Top Income Distribution
3. Infinite-Horizon with Endogenous Human Capital
4. Quantitative Analysis
5. Concluding Remarks
6. Another Explanation: A Schumpeterian Model of Top Income Inequality

Top 1\% vs. Bottom 99\%

Source: Piketty and Saez (2003), 2010 data update

Top 1\% vs. Bottom 99\%

Top Income Shares (\%)

Source: Piketty and Saez (2003), 2010 data update

Within the Top 1\%

Source: Piketty and Saez (2003), 2010 data update

Within the Top 1\%

Top Income Inequality: inequality within the top income group

Top Marginal Tax Rates in the U.S.

Source: Tax Foundation

All Three Together

Source: Tax Foundation

Research Questions

- Why the sharp increase in the top 1% income share?
- Why the increase in top income inequality at the same time?

Research Questions

- Why the sharp increase in the top 1% income share?
- Why the increase in top income inequality at the same time?
- The effect of the top marginal tax rate on these trends?

The Composition of the Top 0.1 Percent Income Share

Top 0.1 percent income share

Other Countries?

Income share of top 0.1 percent

Other Countries?

Top 1\% share, 2006-08

Source: World Wealth \& Income Database

Who's in the Top 1\%

Who's in the Top 1\%

- 1.6 M people

Who's in the Top 1\%

- 1.6 M people
- Income (excluding capital gains) threshold (2014)
- 10% : $\$ 118,140$
- 1% : $\$ 387,810$
- 0.1\%: \$1,537,400
- 0.01\%: \$6,649,000

Who's in the Top 1\%

- 1.6 M people
- Income (excluding capital gains) threshold (2014)
- 10% : $\$ 118,140$
- 1\%: \$387,810
- 0.1\%: \$1,537,400
- 0.01\%: \$6,649,000
- What do they do?

Who's in the Top 1\%

Table 2 -- Percentage of primary taxpayers in top one percent of the distribution of income (excluding capital gains) that are in each occupation

	1979	1993	1997	1999	2001	2002	2003	2004	2005
Executives, managers, supervisors (non-finance)	36.0	33.6	34.5	34.1	31.6	31.3	30.3	30.4	31.0
Medical	16.8	20.4	17.9	15.1	16.5	17.2	17.7	16.7	15.7
Financial professions, including management	7.7	10.6	11.9	13.1	13.5	13.2	13.1	13.6	13.9
Lawyers	7.0	8.9	7.7	7.3	8.3	8.5	8.9	8.8	8.4
Computer, math, engineering, technical (nonfinance)	3.8	3.3	4.2	5.5	5.1	4.9	5.4	4.6	4.6
Not working or deceased	5.2	3.3	4.0	4.2	3.8	4.1	3.5	3.9	4.3
Skilled sales (except finance or real estate)	4.6	4.1	4.5	4.3	4.2	4.1	4.1	4.1	4.2
Blue collar or miscellaneous service	4.2	3.2	3.2	3.2	3.0	3.3	3.2	3.6	3.8
Real estate	1.9	1.4	1.8	2.6	2.6	2.9	2.6	3.1	3.2
Business operations (nonfinance)	2.4	2.2	2.6	2.8	3.3	3.0	2.8	3.3	3.0
Entrepreneur not elsewhere classified	2.7	2.1	2.1	2.1	2.1	1.7	2.1	1.9	2.3
Professors and scientists	1.3	1.8	1.6	1.4	1.8	1.8	1.9	1.8	1.8
Arts, media, sports	1.6	2.0	1.7	2.1	2.0	1.7	2.0	1.7	1.6
Unknown	1.6	1.3	1.0	0.9	0.9	1.0	1.3	1.1	0.9
Government, teachers, social services	0.8	0.9	0.5	0.8	0.5	0.8	0.7	0.8	0.8
Farmers \& ranchers	1.8	0.1	0.6	0.4	0.4	0.3	0.4	0.5	0.5
Pilots	0.7	0.8	0.3	0.3	0.4	0.3	0.3	0.2	0.2

Source: Bakija, Cole, and Heim (2012)

Who's in the Top 0.1\%

Table 3 -- Percentage of primary taxpayers in top 0.1 percent of the distribution of income (excluding capital gains) that are in each occupation

	1979	1993	1997	1999	2001	2002	2003	2004	2005
Executives, managers, supervisors (non-finance)	48.1	45.7	48.4	47.1	42.6	40.6	40.5	40.9	42.5
Financial professions, including management	11.0	14.1	14.7	16.4	19.1	19.0	17.8	18.7	18.0
Lawyers	7.3	6.5	6.3	5.9	7.1	8.2	8.8	8.0	7.3
Medical	7.9	13.3	6.8	4.4	5.2	6.8	7.6	6.3	5.9
Not working or deceased	5.4	2.5	3.5	3.8	4.0	3.7	3.7	3.8	3.8
Real estate	1.8	1.3	1.8	2.1	2.5	2.9	3.0	3.3	3.7
Entrepreneur not elsewhere classified	3.9	3.0	2.8	2.7	2.8	2.9	3.2	3.0	3.0
Arts, media, sports	2.2	3.3	3.5	3.5	3.3	3.6	3.4	3.3	3.0
Business operations (nonfinance)	1.5	1.7	2.3	2.2	2.7	2.7	2.2	2.7	2.9
Computer, math, engineering, technical (nonfinance)	2.3	2.3	3.1	4.7	4.0	3.0	3.1	3.0	2.9
Other known occupation	2.9	2.1	2.2	2.6	2.5	2.5	2.4	2.5	2.7
Skilled sales (except finance or real estate)	2.2	2.9	2.9	2.6	2.4	2.3	2.3	2.3	2.3
Professors and scientists	0.8	0.8	0.7	0.8	0.9	0.9	0.9	0.9	0.9
Farmers \& ranchers	1.4	0.2	0.5	0.5	0.5	0.5	0.5	0.5	0.6
Unknown	1.4	0.5	0.5	0.9	0.7	0.6	0.8	0.7	0.5

Related Literature

Related Literature

- Income inequality in general

Related Literature

- Income inequality in general
- Skill-biased tech. change, globalization, etc.

Related Literature

- Income inequality in general
- Skill-biased tech. change, globalization, etc.
- Why the sharp increase in the top 1% income share?
- Why the increase in top income inequality at the same time?

Related Literature

- Income inequality in general
- Skill-biased tech. change, globalization, etc.
- Why the sharp increase in the top 1% income share?
- Firm size increase (Gabaix and Landier (2008))
- Expansion of the financial sector (Philippon and Reshef (2012), Bell and Van Reenen (2010))
- Not just finance (Bakija, Cole, and Heim (2010) and Kaplan and Rauh (2010))
- Rent Seeking (Piketty, Saez, and Stantcheva (2011), Rothschild and Scheuer (2011))
- Globalization (Haskel, Lawrence, Leamer, and Slaughter (2012))
- Why the increase in top income inequality at the same time?

Related Literature

- Income inequality in general
- Skill-biased tech. change, globalization, etc.
- Why the sharp increase in the top 1% income share?
- Firm size increase (Gabaix and Landier (2008))
- Expansion of the financial sector (Philippon and Reshef (2012), Bell and Van Reenen (2010))
- Not just finance (Bakija, Cole, and Heim (2010) and Kaplan and Rauh (2010))
- Rent Seeking (Piketty, Saez, and Stantcheva (2011), Rothschild and Scheuer (2011))
- Globalization (Haskel, Lawrence, Leamer, and Slaughter (2012))
- The effect of top marginal tax rates?
- Why the increase in top income inequality at the same time?

Related Literature

- Income inequality in general
- Skill-biased tech. change, globalization, etc.
- Why the sharp increase in the top 1% income share?
- Firm size increase (Gabaix and Landier (2008))
- Expansion of the financial sector (Philippon and Reshef (2012), Bell and Van Reenen (2010))
- Not just finance (Bakija, Cole, and Heim (2010) and Kaplan and Rauh (2010))
- Rent Seeking (Piketty, Saez, and Stantcheva (2011), Rothschild and Scheuer (2011))
- Globalization (Haskel, Lawrence, Leamer, and Slaughter (2012))
- The effect of top marginal tax rates?
- Elasticity of taxable income w.r.t. marginal net-of-tax rate ≥ 1 (Lindsey (1987), Feldstein (1995))
- Why the increase in top income inequality at the same time?

Related Literature

- Income inequality in general
- Skill-biased tech. change, globalization, etc.
- Why the sharp increase in the top 1% income share?
- Firm size increase (Gabaix and Landier (2008))
- Expansion of the financial sector (Philippon and Reshef (2012), Bell and Van Reenen (2010))
- Not just finance (Bakija, Cole, and Heim (2010) and Kaplan and Rauh (2010))
- Rent Seeking (Piketty, Saez, and Stantcheva (2011), Rothschild and Scheuer (2011))
- Globalization (Haskel, Lawrence, Leamer, and Slaughter (2012))
- The effect of top marginal tax rates?
- Elasticity of taxable income w.r.t. marginal net-of-tax rate ≥ 1 (Lindsey (1987), Feldstein (1995))
- Why the increase in top income inequality at the same time?
- The effect of top marginal tax rate?

Saez (2001): top marginal tax rate does not affect top income inequality

Related Literature

Related Literature

- Pareto-generating mechanisms: Gabaix (1999, 2009), Gabaix and Moll (2015), Luttmer (2007, 2010), Mitzenmacher (2003), Reed (2001)

Related Literature

- Pareto-generating mechanisms: Gabaix (1999, 2009), Gabaix and Moll (2015), Luttmer (2007, 2010), Mitzenmacher (2003), Reed (2001)
- Use Pareto to get growth: Kortum (1997), Lucas and Moll(2013), Perla and Tonetti (2013).

Related Literature

- Pareto-generating mechanisms: Gabaix (1999, 2009), Gabaix and Moll (2015), Luttmer (2007, 2010), Mitzenmacher (2003), Reed (2001)
- Use Pareto to get growth: Kortum (1997), Lucas and Moll(2013), Perla and Tonetti (2013).
- Pareto wealth distribution: Bisin-Benhabib-Zhu (2011), Nirei(2009), Moll (2012), Piketty-Saez (2012), Piketty-Zucman (2014)

Outline

1. Facts
2. Pareto Top Income Distribution
3. Infinite-Horizon with Endogenous Human Capital
4. Quantitative Analysis
5. Concluding Remarks
6. Another Explanation: A Schumpeterian Model of Top Income Inequality

Pareto Top Income Distribution

- The Top 1\% Income distribution is Pareto distributed (Saez 2001)

Pareto Top Income Distribution

- The Top 1\% Income distribution is Pareto distributed (Saez 2001)
- If income $Y \geq y_{\text {min }} \sim \operatorname{Pareto}(\xi)$,

Pareto Top Income Distribution

- The Top 1\% Income distribution is Pareto distributed (Saez 2001)
- If income $Y \geq y_{\text {min }} \sim \operatorname{Pareto}(\xi)$,
$-\operatorname{Pr}(Y>y)=\left(\frac{y_{\text {min }}}{y}\right)^{\xi}$

Pareto Top Income Distribution

- The Top 1\% Income distribution is Pareto distributed (Saez 2001)
- If income $Y \geq y_{\text {min }} \sim \operatorname{Pareto}(\xi)$,
$-\operatorname{Pr}(Y>y)=\left(\frac{y_{\text {min }}}{y}\right)^{\xi}$
- $\mathbf{E}[Y]=\left(\frac{\xi}{\xi-1}\right) y_{\text {min }}$ for $\xi>1$

Pareto Top Income Distribution

- The Top 1\% Income distribution is Pareto distributed (Saez 2001)
- If income $Y \geq y_{\text {min }} \sim \operatorname{Pareto}(\xi)$,

Cumulative Distribution Function
$-\operatorname{Pr}(Y>y)=\left(\frac{y_{\text {min }}}{y}\right)^{\xi}$
$-\mathbf{E}[Y]=\left(\frac{\xi}{\xi-1}\right) y_{\text {min }}$ for $\xi>1$

Pareto Top Income Distribution

Fractal Property

Pareto Top Income Distribution

Fractal Property

- $y_{x \%} \equiv \operatorname{top} x \%$ income threshold,

Pareto Top Income Distribution

Fractal Property

- $y_{x \%} \equiv$ top $x \%$ income threshold, $y_{\text {min }} \equiv y_{1 \%}$

Pareto Top Income Distribution

Fractal Property

- $y_{x \%} \equiv \operatorname{top} x \%$ income threshold, $y_{\text {min }} \equiv y_{1 \%}$

$$
\Rightarrow y_{0.1 \%}=10^{\frac{1}{\xi}} y_{1 \%}
$$

Pareto Top Income Distribution

Fractal Property

- $y_{x \%} \equiv$ top $x \%$ income threshold, $y_{\text {min }} \equiv y_{1 \%}$
$\Rightarrow y_{0.1 \%}=10^{\frac{1}{\xi}} y_{1 \%} \quad \& \quad y_{0.01 \%}=10^{\frac{1}{\xi}} y_{0.1 \%}$

Pareto Top Income Distribution

Fractal Property

- $y_{x \%} \equiv \operatorname{top} x \%$ income threshold, $y_{\text {min }} \equiv y_{1 \%}$
$\Rightarrow y_{0.1 \%}=10^{\frac{1}{\xi}} y_{1 \%} \quad \& \quad y_{0.01 \%}=10^{\frac{1}{\xi}} y_{0.1 \%}$
- $\frac{(\text { Top 0.1\% Income Share) }}{(\text { Top 1\% Income Share) }}=\frac{(\text { Top 0.01\% Income Share })}{(\text { Top 0.1\% Income Share) }}=10^{\frac{1}{\xi}-1}$

Pareto Top Income Distribution

Fractal Property

- $y_{x \%} \equiv \operatorname{top} x \%$ income threshold, $y_{\text {min }} \equiv y_{1 \%}$
$\Rightarrow y_{0.1 \%}=10^{\frac{1}{\xi}} y_{1 \%} \quad \& \quad y_{0.01 \%}=10^{\frac{1}{\xi}} y_{0.1 \%}$
- $\frac{(\text { Top 0.1\% Income Share) }}{(\text { Top 1\% Income Share) }}=\frac{(\text { Top 0.01\% Income Share })}{(\text { Top 0.1\% Income Share) }}=10^{\frac{1}{\xi}-1}$
$\xi \uparrow \rightarrow$ inequality \downarrow

Power Law Inequality Exponent

- Define "power law inequality exponent η "

$$
\eta \equiv \frac{1}{\xi}
$$

Power Law Inequality Exponent

- Define "power law inequality exponent η "

$$
\eta \equiv \frac{1}{\xi}
$$

- Useful properties
- $\mathbf{E}[Y]=\left(\frac{1}{1-\eta}\right) y_{\text {min }}$
- if $X=Y^{\alpha}, \eta_{X}=\alpha \eta_{Y}$.

Top Inequality in Power Law Inequality Exponent

Calculated from the top shares data in Piketty and Saez (2003) 2010 data update

Outline

1. Facts
2. Pareto Top Income Distribution
3. Infinite-Horizon with Endogenous Human Capital
4. Quantitative Analysis
5. Concluding Remarks
6. Another Explanation: A Schumpeterian Model of Top Income Inequality

Setting Up the Model

Setting Up the Model

- Infinitely-lived individuals, heterogenous in human capital h

Setting Up the Model

- Infinitely-lived individuals, heterogenous in human capital h
- Work (l), consume (c), and invest in human capital (e)

Setting Up the Model

- Infinitely-lived individuals, heterogenous in human capital h
- Work (l), consume (c), and invest in human capital (e)
- Income $y=h l, l$: labor effort (not hours)

Setting Up the Model

- Infinitely-lived individuals, heterogenous in human capital h
- Work (l), consume (c), and invest in human capital (e)
- Income $y=h l, l$: labor effort (not hours)
- Linear tax liability function $T(y)=\tau y$

Setting Up the Model

- Infinitely-lived individuals, heterogenous in human capital h
- Work (l), consume (c), and invest in human capital (e)
- Income $y=h l, l$: labor effort (not hours)
- Linear tax liability function $T(y)=\tau y$
- Budget constraint: $c_{t}+e_{t}=(1-\tau) y_{t}$

Setting Up the Model

- Infinitely-lived individuals, heterogenous in human capital h
- Work (l), consume (c), and invest in human capital (e)
- Income $y=h l, l$: labor effort (not hours)
- Linear tax liability function $T(y)=\tau y$
- Budget constraint: $c_{t}+e_{t}=(1-\tau) y_{t}$
- Flow utility: $u\left(c_{t}, l_{t}\right)=c_{t}-\frac{1}{\rho} \frac{l_{t}^{1+\kappa}}{1+\kappa}$
$\left(\frac{1}{\kappa}\right.$: elasticity of labor supply w.r.t. take-home rate $\left.(1-\tau)\right)$

Setting Up the Model

- Human capital accumulation

Setting Up the Model

- Human capital accumulation

$$
h_{t+1}=\epsilon_{t} h_{t}^{\alpha} e_{t}^{\gamma}
$$

$\epsilon_{t}>0$: idiosyncratic i.i.d. shock, $\mathbf{E}\left[\epsilon_{t}\right]<\infty$
e_{t} : goods investment in human capital, in the consumption unit
$h_{t} \geq h_{\text {min }}>0, h_{\min }$: human capital of the top 1% income threshold

Setting Up the Model

- Human capital accumulation

$$
h_{t+1}=\epsilon_{t} h_{t}^{\alpha} e_{t}^{\gamma}
$$

$\epsilon_{t}>0$: idiosyncratic i.i.d. shock, $\mathbf{E}\left[\epsilon_{t}\right]<\infty$
e_{t} : goods investment in human capital, in the consumption unit
$h_{t} \geq h_{\text {min }}>0, h_{\text {min }}$: human capital of the top 1% income threshold

- $h \neq$ schooling

Setting Up the Model

- Optimization:

$$
\max _{\left\{c_{t}, l_{t}, e_{t}\right\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} \beta^{t} u\left(c_{t}, l_{t}\right)
$$

subject to the budget constraint

$$
c_{t}+e_{t}=(1-\tau) h_{t} l_{t}
$$

human capital accumulation

$$
h_{t+1}=\max \left\{\epsilon_{t} h_{t}^{\alpha} e_{t}^{\gamma}, h_{\min }\right\}
$$

and $c_{t}>0$ for $\forall t \in\{1,2,3, \ldots, \infty\}$

Bellman Equation

$$
V(h)=\max _{c, l, e} u(c, l)+\beta E\left[V\left(h^{\prime}\right)\right]
$$

subject to

$$
\begin{aligned}
& c+e=(1-\tau) h l \\
& h^{\prime}=\max \left\{\epsilon h^{\alpha} e^{\gamma}, h_{\min }\right\} \\
& c>0
\end{aligned}
$$

where h^{\prime} denotes the level of the next period's human capital.

Closed-Form Solutions

labor effort: $\quad l(h)=(\rho(1-\tau) h)^{\frac{1}{\kappa}}$, income: $\quad y(h)=(\rho(1-\tau))^{\frac{1}{\kappa}} h^{1+\frac{1}{\kappa}}$, HK investment: $\quad e(h)=\left(\beta(1-\alpha) \mathbf{E}\left[\epsilon^{1+\frac{1}{\kappa}}\right] X\right)^{\frac{1}{\alpha}} h^{1+\frac{1}{\kappa}}$,
where X is a solution of

$$
\begin{aligned}
X= & \frac{\alpha}{1-\alpha}\left(\beta(1-\alpha) \mathbf{E}\left[\epsilon^{1+\frac{1}{\kappa}}\right]\right)^{\frac{1}{\alpha}} X^{\frac{1}{\alpha}}+\frac{\kappa}{1+\kappa} \rho^{\frac{1}{\kappa}}(1-\tau)^{1+\frac{1}{\kappa}}, \\
& 0<X<\left(\frac{1-\alpha}{\alpha} \rho^{\frac{1}{\kappa}}(1-\tau)^{1+\frac{1}{\kappa}}\right)^{\alpha} /\left(\beta(1-\alpha) \mathbf{E}\left[\epsilon^{1+\frac{1}{\kappa}}\right]\right) .
\end{aligned}
$$

Closed-Form Solutions

labor effort: $\quad l(h)=(\rho(1-\tau) h)^{\frac{1}{\kappa}}$, income: $\quad y(h)=(\rho(1-\tau))^{\frac{1}{\kappa}} h^{1+\frac{1}{\kappa}}$, HK investment: $\quad e(h)=\left(\beta(1-\alpha) \mathbf{E}\left[\epsilon^{1+\frac{1}{\kappa}}\right] X\right)^{\frac{1}{\alpha}} h^{1+\frac{1}{\kappa}}$,
where X is a solution of

$$
\begin{aligned}
X= & \frac{\alpha}{1-\alpha}\left(\beta(1-\alpha) \mathbf{E}\left[\epsilon^{1+\frac{1}{\kappa}}\right]\right)^{\frac{1}{\alpha}} X^{\frac{1}{\alpha}}+\frac{\kappa}{1+\kappa} \rho^{\frac{1}{\kappa}}(1-\tau)^{1+\frac{1}{\kappa}}, \\
& 0<X<\left(\frac{1-\alpha}{\alpha} \rho^{\frac{1}{\kappa}}(1-\tau)^{1+\frac{1}{\kappa}}\right)^{\alpha} /\left(\beta(1-\alpha) \mathbf{E}\left[\epsilon^{1+\frac{1}{\kappa}}\right]\right) .
\end{aligned}
$$

Closed-Form Solutions

labor effort: $\quad l(h)=(\rho(1-\tau) h)^{\frac{1}{\kappa}}$, income: $\quad y(h)=(\rho(1-\tau))^{\frac{1}{\kappa}} h^{1+\frac{1}{\kappa}}$, HK investment: $\quad e(h)=\left(\beta(1-\alpha) \mathbf{E}\left[\epsilon^{1+\frac{1}{\kappa}}\right] X\right)^{\frac{1}{\alpha}} h^{1+\frac{1}{\kappa}}$,
where X is a solution of

$$
\begin{aligned}
X= & \frac{\alpha}{1-\alpha}\left(\beta(1-\alpha) \mathbf{E}\left[\epsilon^{1+\frac{1}{\kappa}}\right]\right)^{\frac{1}{\alpha}} X^{\frac{1}{\alpha}}+\frac{\kappa}{1+\kappa} \rho^{\frac{1}{\kappa}}(1-\tau)^{1+\frac{1}{\kappa}}, \\
& 0<X<\left(\frac{1-\alpha}{\alpha} \rho^{\frac{1}{\kappa}}(1-\tau)^{1+\frac{1}{\kappa}}\right)^{\alpha} /\left(\beta(1-\alpha) \mathbf{E}\left[\epsilon^{1+\frac{1}{\kappa}}\right]\right) .
\end{aligned}
$$

Human Capital: Growth

Human Capital:

$$
h^{\prime}=\max \left\{\epsilon\left(\beta(1-\alpha) \mathbf{E}\left[\epsilon^{1+\frac{1}{\kappa}}\right] X\right)^{\frac{\gamma}{\alpha}} h, h_{\min }\right\} .
$$

Human Capital: Growth

Human Capital:

$$
h^{\prime}=\max \left\{\epsilon\left(\beta(1-\alpha) \mathbf{E}\left[\epsilon^{1+\frac{1}{\kappa}}\right] X\right)^{\frac{\gamma}{\alpha}} h, h_{\min }\right\} .
$$

- Level effect on $h:(1-\tau) \uparrow \Rightarrow X \uparrow \Rightarrow h^{\prime} \uparrow$

Income Growth

Income Growth

- Level effect on y : $(1-\tau) \uparrow$

$$
\Rightarrow y=l(h) \times h=\underbrace{\left((\rho(1-\tau))^{\frac{1}{\kappa}}\right.}_{\begin{array}{c}
\text { labor supply, } \\
\text { immediate }
\end{array}} \underbrace{\left.h^{\frac{1}{\kappa}}\right) \times h}_{\begin{array}{c}
\text { human capital, } \\
\text { long-run }
\end{array}}
$$

Income Growth

- Level effect on y : $(1-\tau) \uparrow$

$$
\Rightarrow y=l(h) \times h=\underbrace{\left((\rho(1-\tau))^{\frac{1}{\kappa}}\right.}_{\begin{array}{c}
\text { labor supply, } \\
\text { immediate }
\end{array}} \underbrace{\left.h^{\frac{1}{\kappa}}\right) \times h}_{\begin{array}{c}
\text { human capital, } \\
\text { long-run }
\end{array}}
$$

- Distribution of h and y ?

Pareto Generating Proportional Random Growth

From the random growth theory:
If

- $x_{t+1}=\max \left\{\gamma_{t} x_{t}, x_{\min }\right\}$ for $x_{\min }>0, \gamma_{t}>0, \mathbf{E}\left[\gamma_{t}\right]<\infty$,
- $\exists \xi>0$ s.t. $\mathbf{E}\left[\gamma_{t}^{\xi}\right]=1$,

Pareto Generating Proportional Random Growth

From the random growth theory:
If

- $x_{t+1}=\max \left\{\gamma_{t} x_{t}, x_{\min }\right\}$ for $x_{\min }>0, \gamma_{t}>0, \mathbf{E}\left[\gamma_{t}\right]<\infty$,
- $\exists \xi>0$ s.t. $\mathbf{E}\left[\gamma_{t}^{\xi}\right]=1$,

Pareto Generating Proportional Random Growth

From the random growth theory:
If

- $x_{t+1}=\max \left\{\gamma_{t} x_{t}, x_{\min }\right\}$ for $x_{\min }>0, \gamma_{t}>0, \mathbf{E}\left[\gamma_{t}\right]<\infty$,
- $\exists \xi>0$ s.t. $\mathbf{E}\left[\gamma_{t}^{\xi}\right]=1$,
then $x_{t} \sim$ Pareto distribution with the power law inequality exponent $\frac{1}{\xi}$.

Pareto Generating Proportional Random Growth

From the random growth theory:

```
If
```

- $x_{t+1}=\max \left\{\gamma_{t} x_{t}, x_{\min }\right\}$ for $x_{\min }>0, \gamma_{t}>0, \mathbf{E}\left[\gamma_{t}\right]<\infty$,
- $\exists \xi>0$ s.t. $\mathbf{E}\left[\gamma_{t}^{\xi}\right]=1$,
then $x_{t} \sim$ Pareto distribution with the power law inequality exponent $\frac{1}{\xi}$.

Pareto Generating Proportional Random Growth

From the random growth theory:
If

- $x_{t+1}=\max \left\{\gamma_{t} x_{t}, x_{\text {min }}\right\}$ for $x_{\text {min }}>0, \gamma_{t}>0, \mathbf{E}\left[\gamma_{t}\right]<\infty$,
- $\exists \xi>0$ s.t. $\mathbf{E}\left[\gamma_{t}^{\xi}\right]=1$,
then $x_{t} \sim$ Pareto distribution with the power law inequality exponent $\frac{1}{\xi}$.

$$
h^{\prime}=\max \{\underbrace{\epsilon\left(\beta(1-\alpha) \mathbf{E}\left[\epsilon^{1+\frac{1}{\kappa}}\right] X\right)^{\frac{\gamma}{\alpha}}}_{\gamma_{t}} h, h_{\min }\}
$$

Proposition 1

(Power Law Inequality in the Infinite Horizon Model)
If $\exists \eta_{h}>0$ s.t.

$$
\mathbf{E}\left[\left\{\epsilon\left(\beta(1-\alpha) \mathbf{E}\left[\epsilon^{1+\frac{1}{\kappa}}\right] X\right)^{\frac{\gamma}{\alpha}}\right\}^{\frac{1}{\eta_{h}}}\right]=1
$$

then

- $h_{t} \sim$ Pareto w/ power law inequality exponent η_{h}
- $y_{t} \sim$ Pareto w/ power law inequality exponent $\eta_{y}=\left(1+\frac{1}{\kappa}\right) \eta_{h}$

Proposition 1

(Power Law Inequality in the Infinite Horizon Model)
If $\exists \eta_{h}>0$ s.t.

$$
\mathbf{E}\left[\left\{\epsilon\left(\beta(1-\alpha) \mathbf{E}\left[\epsilon^{1+\frac{1}{\kappa}}\right] X\right)^{\frac{\gamma}{\alpha}}\right\}^{\frac{1}{\eta_{h}}}\right]=1
$$

then

- $h_{t} \sim$ Pareto w/ power law inequality exponent η_{h}
- $y_{t} \sim$ Pareto w/ power law inequality exponent $\eta_{y}=\left(1+\frac{1}{\kappa}\right) \eta_{h}$
- an increase in the take-home rate $(1-\tau)$ will raise η_{y} and η_{h}.

Proposition 1

(Power Law Inequality in the Infinite Horizon Model)
If $\exists \eta_{h}>0$ s.t.

$$
\mathbf{E}\left[\left\{\epsilon\left(\beta(1-\alpha) \mathbf{E}\left[\epsilon^{1+\frac{1}{\kappa}}\right] X\right)^{\frac{\gamma}{\alpha}}\right\}^{\frac{1}{\eta_{h}}}\right]=1
$$

then

- $h_{t} \sim$ Pareto w/ power law inequality exponent η_{h}
- $y_{t} \sim$ Pareto w/ power law inequality exponent $\eta_{y}=\left(1+\frac{1}{\kappa}\right) \eta_{h}$
- an increase in the take-home rate $(1-\tau)$ will raise η_{y} and η_{h}.

$$
h^{\prime}=\max \left\{\epsilon\left(\beta(1-\alpha) \mathbf{E}\left[\epsilon^{1+\frac{1}{\kappa}}\right] X\right)^{\frac{\gamma}{\alpha}} h, h_{\min }\right\}
$$

Proposition 2

(Power Law Inequality under the Log-Normal Shock)

- If $\log \epsilon \sim \mathbf{N}\left(-\sigma^{2} / 2, \sigma^{2}\right)$, then η_{y} and η_{h} are given by

$$
\begin{aligned}
\frac{1}{\eta_{y}} & =\frac{\kappa}{1+\kappa}\left(1-\frac{\gamma}{\alpha} \frac{\log (\beta(1-\alpha) X)+\left(1+\frac{1}{\kappa}\right) \sigma^{2} /(2 \kappa)}{\sigma^{2} / 2}\right) \\
\eta_{h} & =\eta_{y} /\left(1+\frac{1}{\kappa}\right)
\end{aligned}
$$

Proposition 2

(Power Law Inequality under the Log-Normal Shock)

- If $\log \epsilon \sim \mathbf{N}\left(-\sigma^{2} / 2, \sigma^{2}\right)$, then η_{y} and η_{h} are given by

$$
\begin{aligned}
\frac{1}{\eta_{y}} & =\frac{\kappa}{1+\kappa}\left(1-\frac{\gamma}{\alpha} \frac{\log (\beta(1-\alpha) X)+\left(1+\frac{1}{\kappa}\right) \sigma^{2} /(2 \kappa)}{\sigma^{2} / 2}\right) \\
\eta_{h} & =\eta_{y} /\left(1+\frac{1}{\kappa}\right)
\end{aligned}
$$

- If $\beta \mathbf{E}\left[\epsilon^{1+\frac{1}{\kappa}}\right]\left[\rho^{\frac{1}{\kappa}}(1-\tau)^{1+\frac{1}{\kappa}}\right]^{1-\alpha}<\frac{\kappa+1}{\kappa+\alpha}$, then an increase in the take-home rate $(1-\tau)$ will raise η_{y} and η_{h}.

The Effect of an Increase in $1-\tau$

The Effect of an Increase in $1-\tau$

- Level Effect: $(1-\tau) \uparrow$

The Effect of an Increase in $1-\tau$

- Level Effect: $(1-\tau) \uparrow$
\Rightarrow More work
Human capital investment $\uparrow \rightarrow$ higher human capital

The Effect of an Increase in $1-\tau$

- Level Effect: $(1-\tau) \uparrow$
\Rightarrow More work
Human capital investment $\uparrow \rightarrow$ higher human capital
\Rightarrow Top incomes \uparrow

The Effect of an Increase in $1-\tau$

- Level Effect: $(1-\tau) \uparrow$
\Rightarrow More work
Human capital investment $\uparrow \rightarrow$ higher human capital \Rightarrow Top incomes \uparrow
- Distributional Effect: $(1-\tau) \uparrow$

The Effect of an Increase in $1-\tau$

- Level Effect: $(1-\tau) \uparrow$
\Rightarrow More work
Human capital investment $\uparrow \rightarrow$ higher human capital
\Rightarrow Top incomes \uparrow
- Distributional Effect: $(1-\tau) \uparrow$
\Rightarrow Human capital investment \uparrow

The Effect of an Increase in $1-\tau$

- Level Effect: $(1-\tau) \uparrow$
\Rightarrow More work
Human capital investment $\uparrow \rightarrow$ higher human capital
\Rightarrow Top incomes \uparrow
- Distributional Effect: $(1-\tau) \uparrow$
\Rightarrow Human capital investment \uparrow
\Rightarrow Growth rate of risky human capital \uparrow

The Effect of an Increase in $1-\tau$

- Level Effect: $(1-\tau) \uparrow$
\Rightarrow More work
Human capital investment $\uparrow \rightarrow$ higher human capital
\Rightarrow Top incomes \uparrow
- Distributional Effect: $(1-\tau) \uparrow$
\Rightarrow Human capital investment \uparrow
\Rightarrow Growth rate of risky human capital \uparrow
$\Rightarrow \eta_{h} \uparrow \& \eta_{y} \uparrow$: heavier, more unequal tail

Outline

1. Facts
2. Pareto Top Income Distribution
3. Infinite-Horizon with Endogenous Human Capital
4. Quantitative Analysis
5. Concluding Remarks
6. Another Explanation: A Schumpeterian Model of Top Income Inequality

Quantitative Analysis

1. Calibration
2. Tax Regime Change
3. Myopic Optimization

Top Marginal Tax Rates in the U.S.

Parameter Calibration

Assume the steady state at the high-tax regime, $\tau=0.7$ in 1980

Table: Calibrated Parameter Values

$\kappa=1.5327$	to match est. of elasticity of top 1% income thhd in Lindsey (1987)
$\alpha=0.93$	to match η in 1980
$\gamma=0.0424$	from the parameter restriction $\alpha+\gamma\left(1+\frac{1}{\kappa}\right)=1$
$\beta=0.9957$	$1 /(1+r), r:$ real effective federal funds rate in 1971-1980
$\sigma^{2}=0.1539$	std $(1-\mathrm{yr} \Delta$ (log earning $) \approx 2 \times$ pop. est.
$\rho=0.266$	to match the top 1% income threshold in 1980

Quantitative Analysis

1. Calibration
2. Tax Regime Change
3. Myopic Optimization

Tax Regime Change: Distributional Effect

Transition from high-tax regime to low-tax regime: $\tau=70 \% \rightarrow 40 \%$

Tax Regime Change: Distributional Effect

Transition from high-tax regime to low-tax regime: $\tau=70 \% \rightarrow 40 \%$

Model	
Data	
$\eta_{1980}=0.4359$	

Tax Regime Change: Distributional Effect

Transition from high-tax regime to low-tax regime: $\tau=70 \% \rightarrow 40 \%$

Tax Regime Change: Distributional Effect

Transition from high-tax regime to low-tax regime: $\tau=70 \% \rightarrow 40 \%$

Model		Data	
$\eta_{1980}=0.4359$	$30 \% \uparrow$	$\eta_{1980}=0.4359$	
	$\eta_{2010}=0.5665$		

Tax Regime Change: Distributional Effect

Transition from high-tax regime to low-tax regime: $\tau=70 \% \rightarrow 40 \%$

Model		Data	
$\eta_{1980}=0.4359$	$30 \% \uparrow$	$\eta_{1980}=0.4359$	$45.5 \% \uparrow$

65.9% of the real increase in top income inequality

Tax Regime Change: Transition Dynamics

Tax Regime Change: Top 1\% Income Share

Transition from high-tax regime to low-tax regime: $\tau=70 \% \rightarrow 40 \%$

Tax Regime Change: Top 1\% Income Share

Transition from high-tax regime to low-tax regime: $\tau=70 \% \rightarrow 40 \%$

Model		Data	
$s_{1980}=8.18 \%$		$s_{1980}=8.18 \%$	

Tax Regime Change: Top 1\% Income Share

Transition from high-tax regime to low-tax regime: $\tau=70 \% \rightarrow 40 \%$

Model		Data	
$s_{1980}=8.18 \%$		$s_{1980}=8.18 \%$	

Tax Regime Change: Top 1\% Income Share

Transition from high-tax regime to low-tax regime: $\tau=70 \% \rightarrow 40 \%$

Model		Data	
$s_{1980}=8.18 \%$			$77.2 \% \uparrow$
	$s_{1980}=8.18 \%$		
2010	$=14.5 \%$		

Tax Regime Change: Top 1\% Income Share

Transition from high-tax regime to low-tax regime: $\tau=70 \% \rightarrow 40 \%$

Model		Data	
$s_{1980}=8.18 \%$			
$\tilde{s}_{2010}=14.5 \%$	$113.0 \% \uparrow$	$s_{1980}=8.18 \%$	

Tax Regime Change: Top 1\% Income Share

Transition from high-tax regime to low-tax regime: $\tau=70 \% \rightarrow 40 \%$

Model		Data	
$s_{1980}=8.18 \%$			
	$77.2 \% \uparrow$	$s_{1980}=8.18 \%$	$113.0 \% \uparrow$

68.4% of the real increase in top 1% income share

Tax Regime Change: Level Effect

Decomposition of Level Effect:

$\Delta \log$ (Average Top 1\% Income)

$$
\begin{aligned}
& =\Delta \log \left((\rho(1-\tau))^{\frac{1}{\kappa}}\left(\frac{1}{1-\eta_{h}} h_{\text {min }}\right)^{1+\frac{1}{\kappa}}\right) \\
& =\underbrace{\frac{1}{\kappa} \Delta \log \rho(1-\tau)}_{\begin{array}{c}
\text { labor response } \\
\text { immediate effect } \\
=0.452,51 \%
\end{array}}+\underbrace{\left(1+\frac{1}{\kappa}\right) \Delta \log \left(\frac{1}{1-\eta_{h}}\right)}_{\begin{array}{c}
\text { human capital increase } \\
\text { long-run effect } \\
=0.435,49 \%
\end{array}} .
\end{aligned}
$$

Model Implied Relationship: Income

Power Law Inequality Exponent η

Quantitative Analysis

1. Calibration
2. Tax Regime Change
3. Myopic Optimization

Myopic Optimization

- People reoptimize every year in a response to the rate changes

Myopic Optimization

- People reoptimize every year in a response to the rate changes

Outline

1. Facts
2. Pareto Top Income Distribution
3. Infinite-Horizon with Endogenous Human Capital
4. Quantitative Analysis
5. Concluding Remarks
6. Another Explanation: A Schumpeterian Model of Top Income Inequality

Discussion

Our model explains

- 65.9% of the increase in top income inequality from 1980 to 2010
- 68.4\% of the increase in top 1% income share from 1980 to 2010

Discussion

Our model explains

- 65.9% of the increase in top income inequality from 1980 to 2010
- 68.4\% of the increase in top 1\% income share from 1980 to 2010
- Not much changes since mid-90s

Discussion

Our model explains

- 65.9% of the increase in top income inequality from 1980 to 2010
- 68.4\% of the increase in top 1\% income share from 1980 to 2010
- Not much changes since mid-90s
- Other forces?

Discussion

Our model explains

- 65.9% of the increase in top income inequality from 1980 to 2010
- 68.4\% of the increase in top 1\% income share from 1980 to 2010
- Not much changes since mid-90s
- Other forces? - Jones and Kim (2014)

Summary

- Sharp increases in top income share and top income inequality in the U.S. 1980-2010
- 1980-mid-90s: declines in the top marginal tax rate
- after mid-90s: increased entrepreneurial effort?

Summary

- Sharp increases in top income share and top income inequality in the U.S. 1980-2010
- 1980-mid-90s: declines in the top marginal tax rate
- after mid-90s: increased entrepreneurial effort?
- Contribution
- identifies HK as a link b/w the top marginal tax rate and top incomes

Summary

- Sharp increases in top income share and top income inequality in the U.S. 1980-2010
- 1980-mid-90s: declines in the top marginal tax rate
- after mid-90s: increased entrepreneurial effort?
- Contribution
- identifies HK as a link b/w the top marginal tax rate and top incomes
- study of the dynamics of top incomes w/ endogenous growth framework

Summary

- Sharp increases in top income share and top income inequality in the U.S. 1980-2010
- 1980-mid-90s: declines in the top marginal tax rate
- after mid-90s: increased entrepreneurial effort?
- Contribution
- identifies HK as a link b/w the top marginal tax rate and top incomes
- study of the dynamics of top incomes w/ endogenous growth framework
- Implications
- tax rate $\downarrow \Rightarrow$ top income level \uparrow \& top income inequality \uparrow

Summary

- Sharp increases in top income share and top income inequality in the U.S. 1980-2010
- 1980-mid-90s: declines in the top marginal tax rate
- after mid-90s: increased entrepreneurial effort?
- Contribution
- identifies HK as a link b/w the top marginal tax rate and top incomes
- study of the dynamics of top incomes w/ endogenous growth framework
- Implications
- tax rate $\downarrow \Rightarrow$ top income level \uparrow \& top income inequality \uparrow
- Income inequality in general \uparrow ?

Summary

- Sharp increases in top income share and top income inequality in the U.S. 1980-2010
- 1980-mid-90s: declines in the top marginal tax rate
- after mid-90s: increased entrepreneurial effort?
- Contribution
- identifies HK as a link b/w the top marginal tax rate and top incomes
- study of the dynamics of top incomes w/ endogenous growth framework
- Implications
- tax rate $\downarrow \Rightarrow$ top income level \uparrow \& top income inequality \uparrow
- Income inequality in general \uparrow ?
- Yes, if the bottom 99% stagnates
- No, if the increased tax revenue from the top 1% is redistributed

Outline

1. Facts
2. Pareto Top Income Distribution
3. Infinite-Horizon with Endogenous Human Capital
4. Quantitative Analysis
5. Concluding Remarks
6. Another Explanation: A Schumpeterian Model of Top Income Inequality, Jones and Kim (2014)

Why Skill-Biased Technical Change Fails at the Top

- Let $x_{i}=$ skill and $\bar{w}=$ wage per unit skill

$$
y_{i}=\bar{w} x_{i}^{\alpha}
$$

- if $\operatorname{Pr}\left[x_{i}>x\right]^{-1 / \eta_{x}}$, then

$$
\operatorname{Pr}\left[y_{i}>y\right]=\frac{y}{\bar{w}}^{-1 / \eta_{y}} \text { where } \eta_{y}=\alpha \eta_{x}
$$

- That is, y_{i} is Pareto with inequality parameter η_{y}
- SBTC $(\uparrow \bar{w})$ shifts distribution right but η_{y} unchanged.
- $\uparrow \alpha$ would raise Pareto inequality
- Jones and Kim (2014): why is $x \sim$ Pareto, and why $\uparrow \alpha$

Exponential growth with death \Rightarrow Pareto

TIME

Simple Model for Intuition

- Exponential growth often leads to a Pareto distribution.
- Entrepreneurs
- New entrepreneur ("top earner) earns y_{0}
- Income after x years of experience:

$$
y(x)=y_{0} e^{\mu x}
$$

- Poisson "replacement process at rate δ
- Stationary distribution of experience is exponential

$$
\operatorname{Pr}[\text { Experience }>x]=e^{-\delta x}
$$

What fraction of people have income $>y$?

- Equals fraction with at least $x(y)$ years of experience

$$
x(y)=\frac{1}{\mu} \log \left(\frac{y}{y_{0}}\right)
$$

- Therefore

$$
\begin{aligned}
\operatorname{Pr}[\text { Income }>y] & =\operatorname{Pr}[\text { Experience }>x(y)] \\
& =e^{-\delta x(y)} \\
& ={\frac{y}{y_{0}}}^{-\frac{\delta}{\mu}}
\end{aligned}
$$

- So power law inequality is given by

$$
\eta_{y}=\frac{\mu}{\delta}
$$

Intuition

- Why does the Pareto result emerge?
- Log of income \propto experience (Exponential growth)
- Experience ~ exponential (Poisson process)
- Therefore log income is exponential

$$
\Rightarrow \text { Income } \sim \text { Pareto! }
$$

- A Pareto distribution emerges from exponential growth experienced for an exponentially distributed amount of time.

Summary of the Schumpeterian Model

Summary of the Schumpeterian Model

- Dynamics of top incomes depend on
- entrepreneurial effort (μ)
- creative destruction (δ)

Summary of the Schumpeterian Model

- Dynamics of top incomes depend on
- entrepreneurial effort (μ)
- creative destruction (δ)
- Inequality
- \propto entrepreneurial effort (μ)
- $\propto 1$ /(creative destruction)
- Globalization?
- $\uparrow \mu \Rightarrow$ More inequality
- $\uparrow \delta \Rightarrow$ Less inequality

Summary of the Schumpeterian Model

- Dynamics of top incomes depend on
- entrepreneurial effort (μ)
- creative destruction (δ)
- Inequality
- \propto entrepreneurial effort (μ)
- $\propto 1$ /(creative destruction)
- Globalization?
- $\uparrow \mu \Rightarrow$ More inequality
- $\uparrow \delta \Rightarrow$ Less inequality
- Preliminary SSA data analysis (from Guvenen et. al (2016)) shows μ didn't change much while $\delta \downarrow$ since 1980s

