The Effect of the Top Marginal Tax Rate on Top Income Inequality

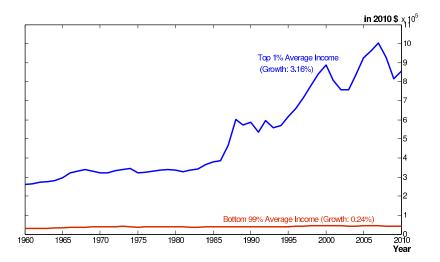
Jihee Kim KAIST

January 11th, 2017 Korea Institute for International Economic Policy

1. Facts

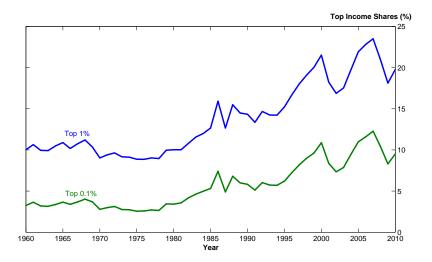
- 2. Pareto Top Income Distribution
- 3. Infinite-Horizon with Endogenous Human Capital
- 4. Quantitative Analysis
- 5. Concluding Remarks

6. Another Explanation: A Schumpeterian Model of Top Income Inequality

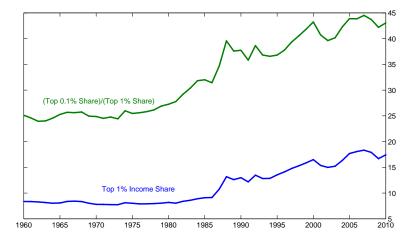


Source: Piketty and Saez (2003), 2010 data update

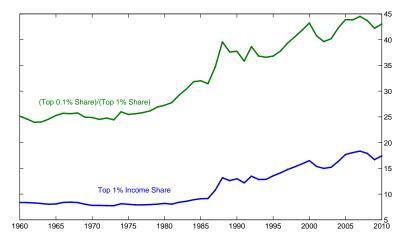
Top 1% vs. Bottom 99%



Source: Piketty and Saez (2003), 2010 data update



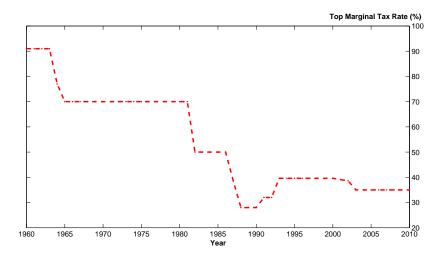
Source: Piketty and Saez (2003), 2010 data update



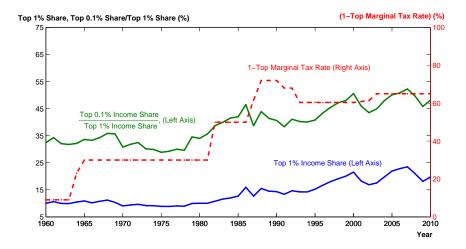
Top Income Inequality: inequality within the top income group

Source: Piketty and Saez (2003), 2010 data update

Top Marginal Tax Rates in the U.S.



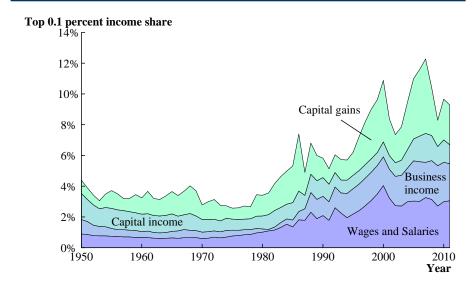
All Three Together



- Why the sharp increase in the top 1% income share?
- Why the increase in top income inequality at the same time?

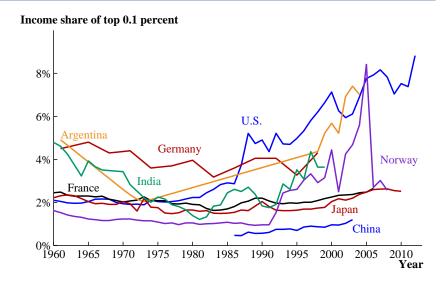
- Why the sharp increase in the top 1% income share?
- Why the increase in top income inequality at the same time?
- The effect of the top marginal tax rate on these trends?

The Composition of the Top 0.1 Percent Income Share



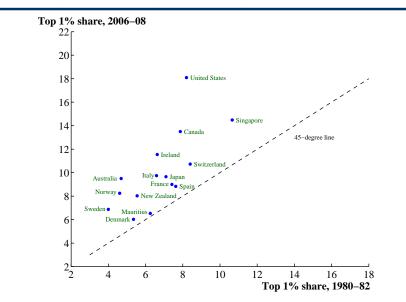
Source: Piketty and Saez (2003), 2013 data update

Other Countries?



Source: World Wealth & Income Database

Other Countries?



Source: World Wealth & Income Database

• 1.6 M people

• 1.6 M people

• Income (excluding capital gains) threshold (2014)

- 10%: \$118,140
- 1%: \$387,810
- 0.1%: \$1,537,400
- 0.01%: \$6,649,000

• 1.6 M people

Income (excluding capital gains) threshold (2014)

- 10%: \$118,140
- 1%: \$387,810
- 0.1%: \$1,537,400
- 0.01%: \$6,649,000
- What do they do?

	1979	1993	1997	1999	2001	2002	2003	2004	2005
Executives, managers, supervisors (non-finance)	36.0	33.6	34.5	34.1	31.6	31.3	30.3	30.4	31.0
Medical	16.8	20.4	17.9	15.1	16.5	17.2	17.7	16.7	15.7
Financial professions, including management	7.7	10.6	11.9	13.1	13.5	13.2	13.1	13.6	13.9
Lawyers	7.0	8.9	7.7	7.3	8.3	8.5	8.9	8.8	8.4
Computer, math, engineering, technical (nonfinance)	3.8	3.3	4.2	5.5	5.1	4.9	5.4	4.6	4.6
Not working or deceased	5.2	3.3	4.0	4.2	3.8	4.1	3.5	3.9	4.3
Skilled sales (except finance or real estate)	4.6	4.1	4.5	4.3	4.2	4.1	4.1	4.1	4.2
Blue collar or miscellaneous service	4.2	3.2	3.2	3.2	3.0	3.3	3.2	3.6	3.8
Real estate	1.9	1.4	1.8	2.6	2.6	2.9	2.6	3.1	3.2
Business operations (nonfinance)	2.4	2.2	2.6	2.8	3.3	3.0	2.8	3.3	3.0
Entrepreneur not elsewhere classified	2.7	2.1	2.1	2.1	2.1	1.7	2.1	1.9	2.3
Professors and scientists	1.3	1.8	1.6	1.4	1.8	1.8	1.9	1.8	1.8
Arts, media, sports	1.6	2.0	1.7	2.1	2.0	1.7	2.0	1.7	1.6
Unknown	1.6	1.3	1.0	0.9	0.9	1.0	1.3	1.1	0.9
Government, teachers, social services	0.8	0.9	0.5	0.8	0.5	0.8	0.7	0.8	0.8
Farmers & ranchers	1.8	0.1	0.6	0.4	0.4	0.3	0.4	0.5	0.5
Pilots	0.7	0.8	0.3	0.3	0.4	0.3	0.3	0.2	0.2

13

Table 3 Percentage of primary taxpayers in top 0.1 percent of the of	listribution of	of incom	e (exclud	ling capi	tal gains) that are	e in each	occupat	ion
	1979	1993	1997	1999	2001	2002	2003	2004	2005
Executives, managers, supervisors (non-finance)	48.1	45.7	48.4	47.1	42.6	40.6	40.5	40.9	42.5
Financial professions, including management	11.0	14.1	14.7	16.4	19.1	19.0	17.8	18.7	18.0
Lawyers	7.3	6.5	6.3	5.9	7.1	8.2	8.8	8.0	7.3
Medical	7.9	13.3	6.8	4.4	5.2	6.8	7.6	6.3	5.9
Not working or deceased	5.4	2.5	3.5	3.8	4.0	3.7	3.7	3.8	3.8
Real estate	1.8	1.3	1.8	2.1	2.5	2.9	3.0	3.3	3.7
Entrepreneur not elsewhere classified	3.9	3.0	2.8	2.7	2.8	2.9	3.2	3.0	3.0
Arts, media, sports	2.2	3.3	3.5	3.5	3.3	3.6	3.4	3.3	3.0
Business operations (nonfinance)	1.5	1.7	2.3	2.2	2.7	2.7	2.2	2.7	2.9
Computer, math, engineering, technical (nonfinance)	2.3	2.3	3.1	4.7	4.0	3.0	3.1	3.0	2.9
Other known occupation	2.9	2.1	2.2	2.6	2.5	2.5	2.4	2.5	2.7
Skilled sales (except finance or real estate)	2.2	2.9	2.9	2.6	2.4	2.3	2.3	2.3	2.3
Professors and scientists	0.8	0.8	0.7	0.8	0.9	0.9	0.9	0.9	0.9
Farmers & ranchers	1.4	0.2	0.5	0.5	0.5	0.5	0.5	0.5	0.6
Unknown	1.4	0.5	0.5	0.9	0.7	0.6	0.8	0.7	0.5

• Income inequality in general

- Income inequality in general
 - Skill-biased tech. change, globalization, etc.

- Income inequality in general
 - Skill-biased tech. change, globalization, etc.
- Why the sharp increase in the top 1% income share?

• Why the increase in top income inequality at the same time?

- Income inequality in general
 - Skill-biased tech. change, globalization, etc.
- Why the sharp increase in the top 1% income share?
 - Firm size increase (Gabaix and Landier (2008))
 - Expansion of the financial sector (Philippon and Reshef (2012), Bell and Van Reenen (2010))
 - Not just finance (Bakija, Cole, and Heim (2010) and Kaplan and Rauh (2010))
 - Rent Seeking (Piketty, Saez, and Stantcheva (2011), Rothschild and Scheuer (2011))
 - Globalization (Haskel, Lawrence, Leamer, and Slaughter (2012))

• Why the increase in top income inequality at the same time?

- Income inequality in general
 - Skill-biased tech. change, globalization, etc.
- Why the sharp increase in the top 1% income share?
 - Firm size increase (Gabaix and Landier (2008))
 - Expansion of the financial sector (Philippon and Reshef (2012), Bell and Van Reenen (2010))
 - Not just finance (Bakija, Cole, and Heim (2010) and Kaplan and Rauh (2010))
 - Rent Seeking (Piketty, Saez, and Stantcheva (2011), Rothschild and Scheuer (2011))
 - Globalization (Haskel, Lawrence, Leamer, and Slaughter (2012))
 - The effect of top marginal tax rates?
- Why the increase in top income inequality at the same time?

- Income inequality in general
 - Skill-biased tech. change, globalization, etc.
- Why the sharp increase in the top 1% income share?
 - Firm size increase (Gabaix and Landier (2008))
 - Expansion of the financial sector (Philippon and Reshef (2012), Bell and Van Reenen (2010))
 - Not just finance (Bakija, Cole, and Heim (2010) and Kaplan and Rauh (2010))
 - Rent Seeking (Piketty, Saez, and Stantcheva (2011), Rothschild and Scheuer (2011))
 - Globalization (Haskel, Lawrence, Leamer, and Slaughter (2012))
 - The effect of top marginal tax rates?
 - Elasticity of taxable income w.r.t. marginal net-of-tax rate ≥ 1 (Lindsey (1987), Feldstein (1995))
- Why the increase in top income inequality at the same time?

- Income inequality in general
 - Skill-biased tech. change, globalization, etc.
- Why the sharp increase in the top 1% income share?
 - Firm size increase (Gabaix and Landier (2008))
 - Expansion of the financial sector (Philippon and Reshef (2012), Bell and Van Reenen (2010))
 - Not just finance (Bakija, Cole, and Heim (2010) and Kaplan and Rauh (2010))
 - Rent Seeking (Piketty, Saez, and Stantcheva (2011), Rothschild and Scheuer (2011))
 - Globalization (Haskel, Lawrence, Leamer, and Slaughter (2012))
 - The effect of top marginal tax rates?
 - Elasticity of taxable income w.r.t. marginal net-of-tax rate ≥ 1 (Lindsey (1987), Feldstein (1995))
- Why the increase in top income inequality at the same time?
 - The effect of top marginal tax rate? Saez (2001): top marginal tax rate does *not* affect top income inequality

 Pareto-generating mechanisms: Gabaix (1999, 2009), Gabaix and Moll (2015), Luttmer (2007, 2010), Mitzenmacher (2003), Reed (2001)

- Pareto-generating mechanisms: Gabaix (1999, 2009), Gabaix and Moll (2015), Luttmer (2007, 2010), Mitzenmacher (2003), Reed (2001)
- Use Pareto to get growth: Kortum (1997), Lucas and Moll(2013), Perla and Tonetti (2013).

- Pareto-generating mechanisms: Gabaix (1999, 2009), Gabaix and Moll (2015), Luttmer (2007, 2010), Mitzenmacher (2003), Reed (2001)
- Use Pareto to get growth: Kortum (1997), Lucas and Moll(2013), Perla and Tonetti (2013).
- Pareto wealth distribution: Bisin-Benhabib-Zhu (2011), Nirei(2009), Moll (2012), Piketty-Saez (2012), Piketty-Zucman (2014)

1. Facts

2. Pareto Top Income Distribution

- 3. Infinite-Horizon with Endogenous Human Capital
- 4. Quantitative Analysis
- 5. Concluding Remarks

6. Another Explanation: A Schumpeterian Model of Top Income Inequality

• The Top 1% Income distribution is Pareto distributed (Saez 2001)

- The Top 1% Income distribution is Pareto distributed (Saez 2001)
- If income $Y \ge y_{min} \sim Pareto(\xi)$,

Pareto Top Income Distribution

- The Top 1% Income distribution is Pareto distributed (Saez 2001)
- If income $Y \ge y_{min} \sim Pareto(\xi)$,

-
$$Pr(Y > y) = \left(\frac{y_{min}}{y}\right)^{\xi}$$

Pareto Top Income Distribution

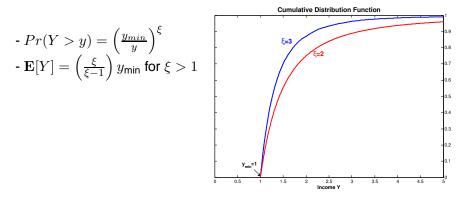
- The Top 1% Income distribution is Pareto distributed (Saez 2001)
- If income $Y \ge y_{min} \sim Pareto(\xi)$,

-
$$Pr(Y > y) = \left(\frac{y_{min}}{y}\right)^{\xi}$$

- $\mathbf{E}[Y] = \left(\frac{\xi}{\xi-1}\right) y_{min} \text{ for } \xi > 1$

Pareto Top Income Distribution

- The Top 1% Income distribution is Pareto distributed (Saez 2001)
- If income $Y \ge y_{min} \sim Pareto(\xi)$,



• $y_{x\%} \equiv \text{top } x \%$ income threshold,

• $y_{x\%} \equiv {
m top} \; x \; \%$ income threshold, $y_{\min} \equiv y_{1\%}$

• $y_{x\%} \equiv \text{top } x \text{ \% income threshold, } y_{\min} \equiv y_{1\%}$ $\Rightarrow y_{0.1\%} = 10^{\frac{1}{\xi}} y_{1\%}$

• $y_{x\%} \equiv \text{top } x \text{ \% income threshold, } y_{\min} \equiv y_{1\%}$ $\Rightarrow y_{0.1\%} = 10^{\frac{1}{\xi}} y_{1\%}$ & $y_{0.01\%} = 10^{\frac{1}{\xi}} y_{0.1\%}$

• $y_{x\%} \equiv \text{top } x \text{ \% income threshold, } y_{\min} \equiv y_{1\%}$ $\Rightarrow y_{0.1\%} = 10^{\frac{1}{\xi}} y_{1\%}$ & $y_{0.01\%} = 10^{\frac{1}{\xi}} y_{0.1\%}$

• $\frac{\text{(Top 0.1\% Income Share)}}{\text{(Top 1\% Income Share)}} = \frac{\text{(Top 0.01\% Income Share)}}{\text{(Top 0.1\% Income Share)}} = 10^{\frac{1}{\xi}-1}$

• $y_{x\%} \equiv \text{top } x \text{ \% income threshold, } y_{\min} \equiv y_{1\%}$ $\Rightarrow y_{0.1\%} = 10^{\frac{1}{\xi}} y_{1\%}$ & $y_{0.01\%} = 10^{\frac{1}{\xi}} y_{0.1\%}$

• $\frac{\text{(Top 0.1\% Income Share)}}{\text{(Top 1\% Income Share)}} = \frac{\text{(Top 0.01\% Income Share)}}{\text{(Top 0.1\% Income Share)}} = 10^{\frac{1}{\xi}-1}$

 $\xi \uparrow \rightarrow {\rm inequality} \downarrow$

• Define "power law inequality exponent η "

$$\eta \equiv \frac{1}{\xi}$$

Define "power law inequality exponent η"

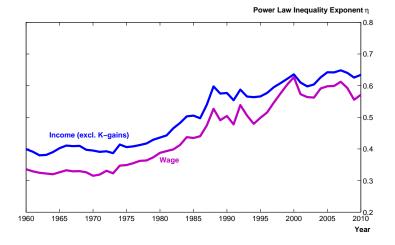
$$\eta \equiv \frac{1}{\xi}$$

• Useful properties

•
$$\mathbf{E}[Y] = \left(\frac{1}{1-\eta}\right) y_{\min}$$

• if $X = Y^{\alpha}$, $\eta_X = \alpha \eta_Y$.

Top Inequality in Power Law Inequality Exponent



Calculated from the top shares data in Piketty and Saez (2003) 2010 data update

1. Facts

2. Pareto Top Income Distribution

3. Infinite-Horizon with Endogenous Human Capital

- 4. Quantitative Analysis
- 5. Concluding Remarks

6. Another Explanation: A Schumpeterian Model of Top Income Inequality

Setting Up the Model

• Infinitely-lived individuals, heterogenous in human capital \boldsymbol{h}

- Infinitely-lived individuals, heterogenous in human capital h
- Work (*l*), consume (*c*), and invest in human capital (*e*)

- Infinitely-lived individuals, heterogenous in human capital h
- Work (*l*), consume (*c*), and invest in human capital (*e*)
- Income y = hl, l: labor effort (not hours)

- Infinitely-lived individuals, heterogenous in human capital h
- Work (*l*), consume (*c*), and invest in human capital (*e*)
- Income y = hl, l: labor effort (not hours)
- Linear tax liability function $T(y) = \tau y$

- Infinitely-lived individuals, heterogenous in human capital h
- Work (*l*), consume (*c*), and invest in human capital (*e*)
- Income y = hl, l: labor effort (not hours)
- Linear tax liability function $T(y) = \tau y$
- Budget constraint: $c_t + e_t = (1 \tau)y_t$

- Infinitely-lived individuals, heterogenous in human capital h
- Work (*l*), consume (*c*), and invest in human capital (*e*)
- Income y = hl, l: labor effort (not hours)
- Linear tax liability function $T(y) = \tau y$
- Budget constraint: $c_t + e_t = (1 \tau)y_t$
- Flow utility: $u(c_t, l_t) = c_t \frac{1}{\rho} \frac{l_t^{1+\kappa}}{1+\kappa}$

 $(\frac{1}{\kappa}$: elasticity of labor supply w.r.t. take-home rate $(1 - \tau)$)

• Human capital accumulation

Human capital accumulation

$$h_{t+1} = \epsilon_t h_t^{\alpha} e_t^{\gamma}$$

 $\epsilon_t > 0$: idiosyncratic i.i.d. shock, $\mathbf{E}[\epsilon_t] < \infty$

 e_t : goods investment in human capital, in the consumption unit $h_t \ge h_{\min} > 0$, h_{\min} : human capital of the top 1% income threshold

• Human capital accumulation

$$h_{t+1} = \epsilon_t h_t^{\alpha} e_t^{\gamma}$$

 $\epsilon_t > 0$: idiosyncratic i.i.d. shock, $\mathbf{E}[\epsilon_t] < \infty$ e_t : goods investment in human capital, in the consumption unit $h_t \ge h_{\min} > 0$, h_{\min} : human capital of the top 1% income threshold

• $h \neq$ schooling

Setting Up the Model

• Optimization:

$$\max_{\{c_t, l_t, e_t\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} \beta^t u(c_t, l_t)$$

subject to the budget constraint

$$c_t + e_t = (1 - \tau)h_t l_t,$$

human capital accumulation

$$h_{t+1} = \max\{\epsilon_t h_t^{\alpha} e_t^{\gamma}, h_{\min}\},\$$

and $c_t > 0$ for $\forall t \in \{1, 2, 3, ..., \infty\}$

$$V(h) = \max_{c,l,e} u(c,l) + \beta E[V(h')]$$

subject to

$$\begin{split} c+e &= (1-\tau)hl,\\ h' &= \max\{\epsilon h^{\alpha}e^{\gamma}, h_{\min}\},\\ c &> 0, \end{split}$$

where h' denotes the level of the next period's human capital.

$$\begin{array}{ll} \text{labor effort:} & l(h) = (\rho(1-\tau)h)^{\frac{1}{\kappa}},\\ \text{income:} & y(h) = (\rho(1-\tau))^{\frac{1}{\kappa}}h^{1+\frac{1}{\kappa}},\\ \text{HK investment:} & e(h) = \left(\beta(1-\alpha)\mathbf{E}[\epsilon^{1+\frac{1}{\kappa}}]X\right)^{\frac{1}{\alpha}}h^{1+\frac{1}{\kappa}}, \end{array}$$

where \boldsymbol{X} is a solution of

$$X = \frac{\alpha}{1-\alpha} \left(\beta(1-\alpha) \mathbf{E}[\epsilon^{1+\frac{1}{\kappa}}] \right)^{\frac{1}{\alpha}} X^{\frac{1}{\alpha}} + \frac{\kappa}{1+\kappa} \rho^{\frac{1}{\kappa}} (1-\tau)^{1+\frac{1}{\kappa}},$$
$$0 < X < \left(\frac{1-\alpha}{\alpha} \rho^{\frac{1}{\kappa}} (1-\tau)^{1+\frac{1}{\kappa}} \right)^{\alpha} / \left(\beta(1-\alpha) \mathbf{E}[\epsilon^{1+\frac{1}{\kappa}}] \right).$$

$$\begin{array}{ll} \text{labor effort:} & l(h) = (\rho(1-\tau)h)^{\frac{1}{\kappa}},\\ \text{income:} & y(h) = (\rho(1-\tau))^{\frac{1}{\kappa}}h^{1+\frac{1}{\kappa}},\\ \text{HK investment:} & e(h) = \left(\beta(1-\alpha)\mathbf{E}[\epsilon^{1+\frac{1}{\kappa}}]\boldsymbol{X}\right)^{\frac{1}{\alpha}}h^{1+\frac{1}{\kappa}}, \end{array}$$

where \boldsymbol{X} is a solution of

$$X = \frac{\alpha}{1-\alpha} \left(\beta(1-\alpha) \mathbf{E}[\epsilon^{1+\frac{1}{\kappa}}] \right)^{\frac{1}{\alpha}} X^{\frac{1}{\alpha}} + \frac{\kappa}{1+\kappa} \rho^{\frac{1}{\kappa}} (1-\tau)^{1+\frac{1}{\kappa}},$$
$$0 < X < \left(\frac{1-\alpha}{\alpha} \rho^{\frac{1}{\kappa}} (1-\tau)^{1+\frac{1}{\kappa}} \right)^{\alpha} / \left(\beta(1-\alpha) \mathbf{E}[\epsilon^{1+\frac{1}{\kappa}}] \right).$$

$$\begin{array}{ll} \text{labor effort:} & l(h) = (\rho(1-\tau)h)^{\frac{1}{\kappa}},\\ \text{income:} & y(h) = (\rho(1-\tau))^{\frac{1}{\kappa}}h^{1+\frac{1}{\kappa}},\\ \text{HK investment:} & e(h) = \left(\beta(1-\alpha)\mathbf{E}[\epsilon^{1+\frac{1}{\kappa}}]\boldsymbol{X}\right)^{\frac{1}{\alpha}}h^{1+\frac{1}{\kappa}}, \end{array}$$

where \boldsymbol{X} is a solution of

$$X = \frac{\alpha}{1-\alpha} \left(\beta(1-\alpha) \mathbf{E}[\epsilon^{1+\frac{1}{\kappa}}] \right)^{\frac{1}{\alpha}} X^{\frac{1}{\alpha}} + \frac{\kappa}{1+\kappa} \rho^{\frac{1}{\kappa}} (1-\tau)^{1+\frac{1}{\kappa}},$$
$$0 < X < \left(\frac{1-\alpha}{\alpha} \rho^{\frac{1}{\kappa}} (1-\tau)^{1+\frac{1}{\kappa}} \right)^{\alpha} / \left(\beta(1-\alpha) \mathbf{E}[\epsilon^{1+\frac{1}{\kappa}}] \right).$$

Human Capital:

$$h' = \max\left\{\epsilon \left(\beta(1-\alpha)\mathbf{E}[\epsilon^{1+\frac{1}{\kappa}}]X\right)^{\frac{\gamma}{\alpha}}h, h_{\min}\right\}.$$

Human Capital:

$$h' = \max\left\{\epsilon \left(\beta(1-\alpha)\mathbf{E}[\epsilon^{1+\frac{1}{\kappa}}]X\right)^{\frac{\gamma}{\alpha}}h, h_{\min}\right\}.$$

• Level effect on h: $(1 - \tau) \uparrow \Rightarrow X \uparrow \Rightarrow h' \uparrow$

Income Growth

• Level effect on
$$y: (1 - \tau) \uparrow$$

$$\Rightarrow y = l(h) \times h = \underbrace{\left((\rho(1 - \tau))^{\frac{1}{\kappa}}}_{\text{labor supply, immediate}} \underbrace{h^{\frac{1}{\kappa}}_{\text{human capital, long-run}} \times h}_{\text{long-run}}$$

• Level effect on
$$y: (1 - \tau) \uparrow$$

$$\Rightarrow y = l(h) \times h = \underbrace{\left((\rho(1 - \tau))^{\frac{1}{\kappa}}}_{\text{labor supply, immediate}} \underbrace{h^{\frac{1}{\kappa}}_{\text{burnan capital, long-run}} \times h \right)}_{\text{human capital, long-run}}$$

• Distribution of *h* and *y*?

• $x_{t+1} = \max\{\gamma_t x_t, x_{\min}\}$ for $x_{\min} > 0, \gamma_t > 0, \mathbf{E}[\gamma_t] < \infty$,

•
$$\exists \xi > 0 \text{ s.t. } \mathbf{E}[\gamma_t^{\xi}] = 1,$$

- $x_{t+1} = \max\{\gamma_t x_t, x_{\min}\}$ for $x_{\min} > 0, \gamma_t > 0, \mathbf{E}[\gamma_t] < \infty$,
- $\exists \xi > 0$ s.t. $\mathbf{E}[\gamma_t^{\xi}] = 1$,

- $x_{t+1} = \max\{\gamma_t x_t, x_{\min}\} \text{ for } x_{\min} > 0, \, \gamma_t > 0, \, \mathbf{E}[\gamma_t] < \infty,$
- $\exists \xi > 0$ s.t. $\mathbf{E}[\gamma_t^{\xi}] = 1$,

then $x_t \sim$ Pareto distribution with the power law inequality exponent $\frac{1}{\xi}$.

- $x_{t+1} = \max\{\gamma_t x_t, x_{\min}\} \text{ for } x_{\min} > 0, \, \gamma_t > 0, \, \mathbf{E}[\gamma_t] < \infty,$
- $\exists \xi > 0$ s.t. $\mathbf{E}[\gamma_t^{\xi}] = 1$,

then $x_t \sim$ Pareto distribution with the power law inequality exponent $\frac{1}{\xi}$.

From the random growth theory: If

- $x_{t+1} = \max\{\gamma_t x_t, x_{\min}\} \text{ for } x_{\min} > 0, \, \gamma_t > 0, \, \mathbf{E}[\gamma_t] < \infty,$
- $\exists \xi > 0$ s.t. $\mathbf{E}[\gamma_t^{\xi}] = 1$,

then $x_t \sim$ Pareto distribution with the power law inequality exponent $\frac{1}{\xi}$.

$$h' = \max\{\underbrace{\epsilon\left(\beta(1-\alpha)\mathbf{E}[\epsilon^{1+\frac{1}{\kappa}}]X\right)^{\frac{\gamma}{\alpha}}}_{\gamma_t}h, h_{\min}\}$$

(Power Law Inequality in the Infinite Horizon Model) If $\exists \eta_h > 0$ s.t.

$$\mathbf{E}\left[\left\{\epsilon\left(\beta(1-\alpha)\mathbf{E}[\epsilon^{1+\frac{1}{\kappa}}]X\right)^{\frac{\gamma}{\alpha}}\right\}^{\frac{1}{\eta_h}}\right] = 1,$$

then

- $h_t \sim$ Pareto w/ power law inequality exponent η_h
- $y_t \sim$ Pareto w/ power law inequality exponent $\eta_y = \left(1 + \frac{1}{\kappa}\right) \eta_h$

(Power Law Inequality in the Infinite Horizon Model) If $\exists \eta_h > 0$ s.t.

$$\mathbf{E}\left[\left\{\epsilon\left(\beta(1-\alpha)\mathbf{E}[\epsilon^{1+\frac{1}{\kappa}}]X\right)^{\frac{\gamma}{\alpha}}\right\}^{\frac{1}{\eta_h}}\right] = 1,$$

then

- $h_t \sim$ Pareto w/ power law inequality exponent η_h
- $y_t \sim$ Pareto w/ power law inequality exponent $\eta_y = (1 + \frac{1}{\kappa}) \eta_h$
- an increase in the take-home rate (1τ) will raise η_y and η_h .

(Power Law Inequality in the Infinite Horizon Model) If $\exists \eta_h > 0$ s.t.

$$\mathbf{E}\left[\left\{\epsilon\left(\beta(1-\alpha)\mathbf{E}[\epsilon^{1+\frac{1}{\kappa}}]X\right)^{\frac{\gamma}{\alpha}}\right\}^{\frac{1}{\eta_h}}\right] = 1,$$

then

- $h_t \sim$ Pareto w/ power law inequality exponent η_h
- $y_t \sim$ Pareto w/ power law inequality exponent $\eta_y = (1 + \frac{1}{\kappa}) \eta_h$
- an increase in the take-home rate (1τ) will raise η_y and η_h .

$$h' = \max\{\epsilon \left(\beta(1-\alpha)\mathbf{E}[\epsilon^{1+\frac{1}{\kappa}}]X\right)^{\frac{\gamma}{\alpha}}h, h_{\min}\}$$

(Power Law Inequality under the Log-Normal Shock)

• If $\log \epsilon \sim \mathbf{N}(-\sigma^2/2,\sigma^2)$, then η_y and η_h are given by

$$\frac{1}{\eta_y} = \frac{\kappa}{1+\kappa} \left(1 - \frac{\gamma}{\alpha} \frac{\log\left(\beta(1-\alpha)X\right) + \left(1 + \frac{1}{\kappa}\right)\sigma^2/(2\kappa)}{\sigma^2/2} \right),$$

$$\eta_h = \eta_y / \left(1 + \frac{1}{\kappa}\right).$$

(Power Law Inequality under the Log-Normal Shock)

• If $\log \epsilon \sim \mathbf{N}(-\sigma^2/2, \sigma^2)$, then η_y and η_h are given by

$$\frac{1}{\eta_y} = \frac{\kappa}{1+\kappa} \left(1 - \frac{\gamma}{\alpha} \frac{\log\left(\beta(1-\alpha)X\right) + \left(1 + \frac{1}{\kappa}\right)\sigma^2/(2\kappa)}{\sigma^2/2} \right),$$

$$\eta_h = \eta_y / \left(1 + \frac{1}{\kappa}\right).$$

• If $\beta \mathbf{E}[\epsilon^{1+\frac{1}{\kappa}}][\rho^{\frac{1}{\kappa}}(1-\tau)^{1+\frac{1}{\kappa}}]^{1-\alpha} < \frac{\kappa+1}{\kappa+\alpha}$, then an increase in the take-home rate $(1-\tau)$ will raise η_y and η_h .

The Effect of an Increase in $1-\tau$

- Level Effect: (1- τ) \uparrow
 - $\Rightarrow \textit{More work}$

Human capital investment $\uparrow \rightarrow$ higher human capital

 \Rightarrow More work

Human capital investment $\uparrow \rightarrow$ higher human capital

 \Rightarrow Top incomes \uparrow

- Level Effect: (1- τ) \uparrow
 - $\Rightarrow \textit{More work}$

Human capital investment $\uparrow \rightarrow$ higher human capital

 \Rightarrow Top incomes \uparrow

Distributional Effect: (1-τ) ↑

 $\Rightarrow \textit{More work}$

Human capital investment $\uparrow \rightarrow$ higher human capital

- $\Rightarrow \text{Top incomes} \uparrow$
- Distributional Effect: (1-τ) ↑

 \Rightarrow Human capital investment \uparrow

 $\Rightarrow \textit{More work}$

Human capital investment $\uparrow \rightarrow$ higher human capital

- $\Rightarrow \text{Top incomes} \uparrow$
- Distributional Effect: (1-τ) ↑
 - \Rightarrow Human capital investment \uparrow
 - \Rightarrow Growth rate of risky human capital \uparrow

 \Rightarrow More work

Human capital investment $\uparrow \rightarrow$ higher human capital

- $\Rightarrow \text{Top incomes} \uparrow$
- Distributional Effect: (1- τ) \uparrow
 - \Rightarrow Human capital investment \uparrow
 - \Rightarrow Growth rate of risky human capital \uparrow

 \Rightarrow η_h \uparrow & η_y \uparrow : heavier, more unequal tail

1. Facts

- 2. Pareto Top Income Distribution
- 3. Infinite-Horizon with Endogenous Human Capital

4. Quantitative Analysis

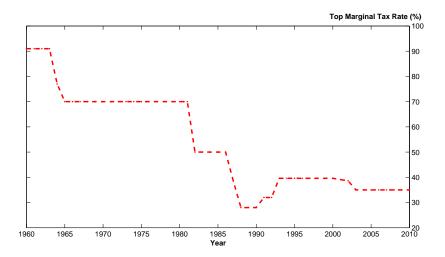
5. Concluding Remarks

6. Another Explanation: A Schumpeterian Model of Top Income Inequality

1. Calibration

- 2. Tax Regime Change
- 3. Myopic Optimization

Top Marginal Tax Rates in the U.S.



Assume the steady state at the high-tax regime, $\tau = 0.7$ in 1980

Table: Calibrated Parameter Values

to match est. of elasticity of top 1% income thhd in Lindsey (1987)
to match η in 1980
from the parameter restriction $\alpha + \gamma \left(1 + \frac{1}{\kappa}\right) = 1$
1/(1+r), r: real effective federal funds rate in 1971-1980
std(1-yr Δ (log earning)) $pprox$ 2 $ imes$ pop. est.
to match the top 1% income threshold in 1980

1. Calibration

2. Tax Regime Change

3. Myopic Optimization

Model		Dat	а	
$\eta_{1980} =$	0.4359		$\eta_{1980} = 0.4359$	

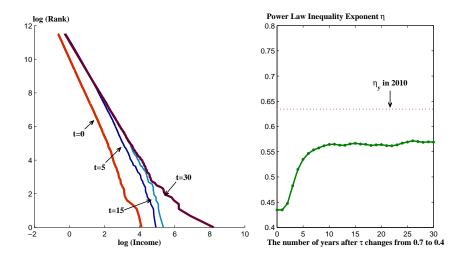
ĺ	Model		Dat	а
	$\eta_{1980} = 0.4359$	30% ↑	$\eta_{1980} = 0.4359$	
	$\tilde{\eta}_{2010} = 0.5216$	5070		

Model		Data	
$\eta_{1980} = 0.4359$		$\eta_{1980} = 0.4359$	45.5% ↑
$\tilde{\eta}_{2010} = 0.5216$		$\eta_{2010} = 0.5665$	10.070

Model		Data	
$\eta_{1980} = 0.4359$		$\eta_{1980} = 0.4359$	45.5% ↑
$\tilde{\eta}_{2010} = 0.5216$		$\eta_{2010} = 0.5665$	43.570

65.9% of the real increase in top income inequality

Tax Regime Change: Transition Dynamics



Mode		Data	a
$s_{1980} = 8.18\%$		$s_{1980} = 8.18\%$	

Mode		Data	a
$s_{1980} = 8.18\%$		$s_{1980} = 8.18\%$	

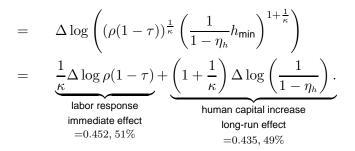
Model		Data	
$s_{1980} = 8.18\%$	77 2% ↑	$s_{1980} = 8.18\%$	
$\tilde{s}_{2010} = 14.5\%$	77.2% ↑		

Model		Data	
$s_{1980} = 8.18\%$		$s_{1980} = 8.18\%$	113.0% ↑
$\tilde{s}_{2010} = 14.5\%$		$s_{2010} = 17.42\%$	115.070

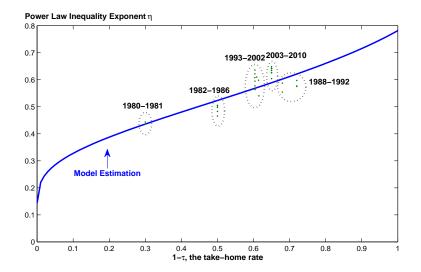
Model		Data	
$s_{1980} = 8.18\%$		$s_{1980} = 8.18\%$	113.0% ↑
$\tilde{s}_{2010} = 14.5\%$		$s_{2010} = 17.42\%$	113.070

68.4% of the real increase in top 1% income share

Decomposition of Level Effect: $\Delta \log(\text{Average Top 1\% Income})$



Model Implied Relationship: Income



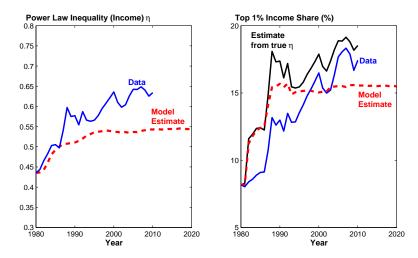
- 1. Calibration
- 2. Tax Regime Change
- 3. Myopic Optimization

Myopic Optimization

· People reoptimize every year in a response to the rate changes

Myopic Optimization

People reoptimize every year in a response to the rate changes



1. Facts

- 2. Pareto Top Income Distribution
- 3. Infinite-Horizon with Endogenous Human Capital
- 4. Quantitative Analysis

5. Concluding Remarks

6. Another Explanation: A Schumpeterian Model of Top Income Inequality

- 65.9% of the increase in top income inequality from 1980 to 2010
- 68.4% of the increase in top 1% income share from 1980 to 2010

- 65.9% of the increase in top income inequality from 1980 to 2010
- 68.4% of the increase in top 1% income share from 1980 to 2010
- Not much changes since mid-90s

- 65.9% of the increase in top income inequality from 1980 to 2010
- 68.4% of the increase in top 1% income share from 1980 to 2010
- Not much changes since mid-90s
 - Other forces?

- 65.9% of the increase in top income inequality from 1980 to 2010
- 68.4% of the increase in top 1% income share from 1980 to 2010
- Not much changes since mid-90s
 - Other forces? Jones and Kim (2014)

- Sharp increases in top income share and top income inequality in the U.S. 1980-2010
- 1980-mid-90s: declines in the top marginal tax rate
- after mid-90s: increased entrepreneurial effort?

- Sharp increases in top income share and top income inequality in the U.S. 1980-2010
- 1980-mid-90s: declines in the top marginal tax rate
- after mid-90s: increased entrepreneurial effort?
- Contribution
 - identifies HK as a link b/w the top marginal tax rate and top incomes

- Sharp increases in top income share and top income inequality in the U.S. 1980-2010
- 1980-mid-90s: declines in the top marginal tax rate
- after mid-90s: increased entrepreneurial effort?
- Contribution
 - identifies HK as a link b/w the top marginal tax rate and top incomes
 - study of the dynamics of top incomes w/ endogenous growth framework

- Sharp increases in top income share and top income inequality in the U.S. 1980-2010
- 1980-mid-90s: declines in the top marginal tax rate
- after mid-90s: increased entrepreneurial effort?
- Contribution
 - identifies HK as a link b/w the top marginal tax rate and top incomes
 - study of the dynamics of top incomes w/ endogenous growth framework
- Implications
 - tax rate $\downarrow \Rightarrow$ top income level \uparrow & top income inequality \uparrow

- Sharp increases in top income share and top income inequality in the U.S. 1980-2010
- 1980-mid-90s: declines in the top marginal tax rate
- after mid-90s: increased entrepreneurial effort?
- Contribution
 - identifies HK as a link b/w the top marginal tax rate and top incomes
 - study of the dynamics of top incomes w/ endogenous growth framework
- Implications
 - tax rate $\downarrow \Rightarrow$ top income level \uparrow & top income inequality \uparrow
 - Income inequality in general ↑?

- Sharp increases in top income share and top income inequality in the U.S. 1980-2010
- 1980-mid-90s: declines in the top marginal tax rate
- after mid-90s: increased entrepreneurial effort?
- Contribution
 - identifies HK as a link b/w the top marginal tax rate and top incomes
 - study of the dynamics of top incomes w/ endogenous growth framework
- Implications
 - tax rate ↓ ⇒ top income level ↑ & top income inequality ↑
 - Income inequality in general ↑?
 - Yes, if the bottom 99% stagnates
 - No, if the increased tax revenue from the top 1% is redistributed

1. Facts

- 2. Pareto Top Income Distribution
- 3. Infinite-Horizon with Endogenous Human Capital
- 4. Quantitative Analysis
- 5. Concluding Remarks

6. Another Explanation: A Schumpeterian Model of Top Income Inequality, Jones and Kim (2014)

• Let $x_i = skill$ and $\bar{w} = wage per unit skill$

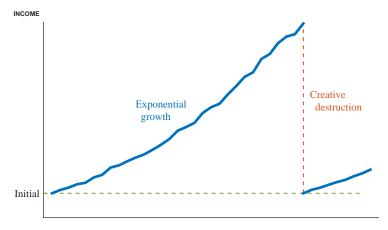
$$y_i = \bar{w} x_i^{\alpha}$$

• if $\Pr[x_i > x]^{-1/\eta_x}$, then

$$Pr[y_i > y] = rac{y}{\bar{w}}^{-1/\eta_y}$$
 where $\eta_y = \alpha \eta_x$

- That is, y_i is Pareto with inequality parameter η_y
 - SBTC ($\uparrow \bar{w}$) shifts distribution right but η_y unchanged.
 - $\uparrow \alpha$ would raise Pareto inequality
 - Jones and Kim (2014): why is $x \sim$ Pareto, and why $\uparrow \alpha$

Exponential growth with death \Rightarrow Pareto



TIME

- Exponential growth often leads to a Pareto distribution.
- Entrepreneurs
 - New entrepreneur ("top earner) earns y₀
 - Income after x years of experience:

$$y(x) = y_0 e^{\mu x}$$

- Poisson "replacement process at rate δ
 - Stationary distribution of experience is exponential

 $Pr[\text{Experience} > x] = e^{-\delta x}$

What fraction of people have income > y?

• Equals fraction with at least x(y) years of experience

$$x(y) = \frac{1}{\mu} \log\left(\frac{y}{y_0}\right)$$

• Therefore

$$\begin{array}{lll} Pr[{\rm Income} > y] &=& Pr[{\rm Experience} > x(y)] \\ &=& e^{-\delta x(y)} \\ &=& \frac{y}{y_0}^{-\frac{\delta}{\mu}} \end{array}$$

So power law inequality is given by

$$\eta_y = \frac{\mu}{\delta}$$

- Why does the Pareto result emerge?
 - Log of income \propto experience (Exponential growth)
 - Experience \sim exponential (Poisson process)
 - Therefore log income is exponential

 \Rightarrow Income \sim Pareto!

• A Pareto distribution emerges from exponential growth experienced for an exponentially distributed amount of time.

- Dynamics of top incomes depend on
 - entrepreneurial effort (μ)
 - creative destruction (δ)

- Dynamics of top incomes depend on
 - entrepreneurial effort (μ)
 - creative destruction (δ)
- Inequality
 - \propto entrepreneurial effort (μ)
 - $\propto 1/({
 m creative destruction})$
- Globalization?
 - $\uparrow \mu \Rightarrow$ More inequality
 - $\uparrow \delta \Rightarrow$ Less inequality

- Dynamics of top incomes depend on
 - entrepreneurial effort (μ)
 - creative destruction (δ)
- Inequality
 - \propto entrepreneurial effort (μ)
 - $\propto 1/({
 m creative destruction})$
- Globalization?
 - $\uparrow \mu \Rightarrow$ More inequality
 - $\uparrow \delta \Rightarrow$ Less inequality
- Preliminary SSA data analysis (from Guvenen et. al (2016)) shows μ didn't change much while $\delta \downarrow$ since 1980s