KIEP 대외경제정책연구원

전문가풀 회의결과 보고서

작성부서 : 무역통상실 작성일 : 2014.9.26 작성자 : 배찬권 전화: 1208 연락처:

I. 개 요

1. 일시 : 2014. 9. 26. (16:00~18:00)

2. **장소** : 11층 회의실

3. 발표자 : 산업연구원 김재덕 박사, 산업연구원 김혁중 초청연구원

4. 참석자

김영귀(KIEP, 지역무역협정팀장)

배찬권(KIEP, 무역투자정책팀장)

김종덕(KIEP, 다자통상팀장)

이승래(KIEP, 부연구위원)

황운중(KIEP. 부연구위원)

현혜정(경희대, 조교수)

장용준(경희대, 조교수)

김혁황(KIEP, 전문연구원)

박혜리(KIEP, 전문연구원)

김민성(KIEP, 전문연구원)

이준원(KIEP, 연구원)

신민이(KIEP. 연구원)

이주미(KIEP, 연구원)

4. 제 목

- 세계투입산출표의 구조와 활용 방법

KIED

Ⅱ. 주요 논의 사항

1) 발제내용

- □ WIOD 관련 문헌 정리
- Timmer(2010) "WIOD:WORLD INPUT-OUTPUT DATABASE construction and applications" World KLEMS
- Timmer, et al.(2014) "Incomes and Jobs in Global Production of Manufactures" World KLEMS
- Erik Dietzenbacher , Bart Los , Robert Stehrer , Marcel Timmer & Gaaitzen de Vries (2013) "The Construction of World Input-output Tables in the WIOD Project", Economic Systems Research, 25:1, 71-98
- □ WIOD의 주요 특성
- 공급사용표를 기반으로 구성
- 각국의 국민계정 상의 데이터를 포함
- 서비스 교역 자료를 포함
- 기타 사회경제(고용 및 자본 등) 및 환경(에너지, 환경오염, 천연자원 등) 관련 데이터를 포함
- □ WIOD 데이터 커버리지
- 27개 EU 국가와 기타 13개 주요국을 포함
- 35개 산업
- □ 다양한 세계투입산출표의 출처와 상호 비교
- WIOD: EU KLEMS 참여국의 주도로 구축되며, 40개 국가, 35개 산업, 1995-2011년의 자료를 포함
- Inter-Country IO model(ICIO): OECD가 구축하며 40개국, 18개

전문가풀 토의자료

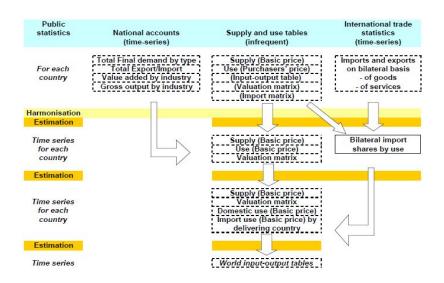
- 산업, 1995, 2005, 2008, 2009년의 자료를 포함
- Asian International IO table: JETRO가 구축하며 아시아 주요 10개국과 76개 산업, 1995-2005년까지 5년 주기의 자료를 포함
- GTAP: 미 퍼듀대학이 제작하며 129개국, 57개 산업, 2004년과 2007년의 자료를 포함
- UNCTAD Eora GVC 데이터베이스: UNCTAD가 제작하며, 187개 국, 25-500개 산업, 1990-2010년 자료를 포함

□ 국가 공급사용표의 구조

- 세계투입산출표(WIOT)의 기초가 되는 국가별 공급사용표와 국민계정, 기타 환경데이터를 결합한 데이터의 구조를 일반화하면 다음과 같음.

		Supply	Intermediate use	Domestic final use	Total	
		product	industry	CIG		
country A	product		Intermediate use	Domestic final use	Exports	Total use by product
country A	industry	Domestic supply				Total output by industry
		Imports				
			Labour by type Capital by type Profit			
Total		Total supply by product	Total input by industry			21
			Energy			
			Air			
		8	Natura	al resources		I.

- 국가 A를 중심으로 국가별 공급사용표를 서로 연결하면 다음과 같이 국가 A와 타국가간 공급사용 관계를 나타내는 공급사용표를 구축할 수 있음.


		Supply	Intermediate use	Domestic fina use	Expo	Exports to country			
		product	industry	CIG	B	Country	Total Use		
country A	product		Intermediate use of domestic output	Domestic fina use of domesti output		Exports to C	Total use of domestic output		
country B	product		Intermediate use of imports from B	Domestic fina use of imports from B		Re- exports	Total use of imports from B		
country C	product		Intermediate use of imports from C	Domestic fina use of imports from C	II RA	-	Total use of imports from C		
country A	industry	Domestic supply							
country B		Imports from B							
country C		Imports from C							
		Total supply	Gross value added						
			Gross output						

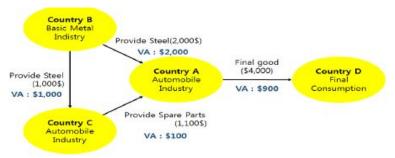
- 이상의 공급사용표를 국가별·산업별로 연결하여 세계투입산출표를 구축함.

		Country A Intermediate use industry	Country B Intermediate use industry	Country C Intermediate use industry	Country A Final domestic use (C, I, G)	Country B Final domestic use (C, I, G)	Country C Final domestic use (C, I, G)	Total output
country A	industry	Intermediate use of domestic output by A	Intermediate use by R	Intermediate use by C of imports from A	Final use of domestic output by A	Final use by B of imports from A	Final use by C of imports from A	Total output in A
country B	industry		Intermediate use of domestic output by B	Intermediate use by C of imports from B	Final use by A of imports from B	Final use of domestic output by B	Final use by C of imports from B	Total output in B
country C	industry	Intermediate use by A of imports from C	Intermediate use by B of imports from C	Intermediate use of domestic output by B	Final use by A of imports from C	Final use by B of imports from C	Final use of domestic output by C	Total output in C
	_	Gross value added	Gross value added	Gross value added				
		Total output in A	Total output in B	Total output in C				

- 지금까지의 WIOT 구축과정을 요약하면 다음과 같음.

전문가풀 토의자료

□ WIOT에서 부가가치 흐름의 사례: 스웨덴의 자동차 수출


			Sw	ed	len		Γ	Ja	apa	an		Г	Sw	ed	еп	Ja	ıpa	ın	l	1	Tot					
		M	•••	5		C	M	***	S		C	M		5		C	Н	1	G	H	1	G	Н	1	G	
Sweden	Mining	•	٠	•	•	7		٠	1	٠	•	٠	٠	٠	٠	•		•	•	•	٠	•		•	٠	٠
			•		•	ł	٠		ı	•	•		•	•	•	•		•	•	•	٠	•	-	•	•	•
	Steel manuf	-	•	•	•	H			ı	•	•			•	•	•		•	•	•				•	•	•
			٠	•		ł	ŀ		ı	•	•	٠	•	•	•		٠	•	•	•			•	•	٠	
	Car manuf	•	×			٠	-	٠	٠		٠		•				-		-					•	•	
Japan	Mining	•	•	ં	•	3	ŀ	•	1	•	·	•	•	•	•	•		ै	•	•	•	•	•	*	•	•
		•	•	•	•		٠		ı	•	•					•		•	•		•	•	•	•	•	
	Steel manuf	4	4				ŀ		ı	•	•			•				•						•	•	•
		1.	•	•	•	•			ı	•	•	٠			•	•	٠	•	•	•		•		•	•	
	Car manuf		٠	•	٠	•			٧	٠.	•		•	•	٠	•		•	•		٠	•	•	•	•	•
USA	Mining	-	-	-	-	-	-			•	•	•	•	•	•	•		•	•		•	•		•	٠	•
		ŀ															•						•		•	•
	Steel manuf		٠			•		•	٠	•	٠	•	٠	•	•			٠	•		٠		•	•	٠	•
			•	•		4	٠		4	•		ŀ	•			•		•	•	•			-	•	•	
	Car manuf	•	•	•	•	4		•	4	•	•	ŀ	•		•	•		•	•			•		•	•	•
Value added		•	•	•	•	•		•	1	•	•	F	•	•	•											
Total		•		•	•	₹	•		ŧ	•	•	Ŷ	٠	•	•	_	US	m	ini	ng	re	ан	ire		_	
Employment		•	٠	•	•		٠	•		•	•	٠		•	1	_	US					,				
CO2 emissions																		-			_	_	_	_		

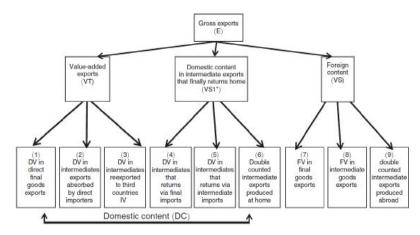
스웨덴 자동차 제조업체가 일본산 철강을 중간재로 사용하여
 수출을 위한 자동차를 생산, 스웨덴 노동력의 투입이 발생

- 스웨덴 자동차 생산에 투입되는 일본산 철강 생산에 미국의 광물이 중간재로 투입, 일본 노동력의 투입이 발생
- 미국의 광물 생산을 위해 미국 노동력 투입이 발생

□ 총교역 통계 사용의 문제점

- 생산공정의 분절화 진전으로 총교역에서 중복계산의 문제가 증폭됨 (Grossman and Rossi-Hansberg, 2008).
- 총교역에는 중간재와 최종재가 서로 구별되지 않고 포함되어 있어 부가가치의 원천을 파악할 수 없음.
- 이에 따라 총수출에서 발생하는 부가가치와 부가가치의 원천을 이해하기 위해 새로운 분석체계가 필요함.
- 다음은 총수출액과 수출이 창출하는 부가가치 간의 차이를 예시함.

- □ 총수출에서 부가가치 수출을 분해하는 방법에 대한 선행연구
- ICIO를 사용하여 총수출을 분해하려는 여러 시도가 있음.
- Johnson and Noguera(2012)는 총수출로부터 Value-Added Content를 추출한 바 있음.
- Koopman, Wang and Wei(2014)는 이상 연구를 발전시켜 GTAP과 WIOD를 사용하여 총수출을 분해하였으나, 산업 수준의 분해 결과와 국가 수준의 분해 결과가 일치하지 않는 문제점이 발생함.
- Wang, Wei and Zhu(2014)는 KWW의 문제점을 해결함.


전문가풀 토의자료

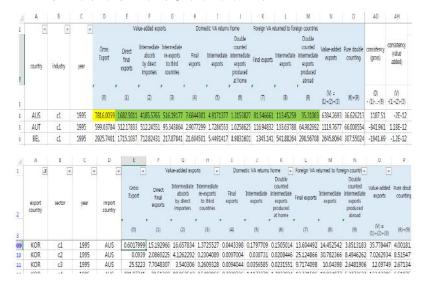
□ JN과 KWW의 총수출 분해식

- John and Noguera(2012) 방식

$$E_s = VT_s + DOM_s + FOR_s$$

Value-added Returned value-added Foreign value-added

- Koopman, Wang and Wei(2014) 방식



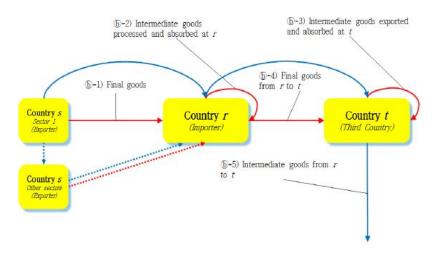
$$E_{s} = \underbrace{V_{s} \sum_{r \neq s}^{G} B_{ss} Y_{sr} + V_{s} \sum_{r \neq s}^{G} B_{sr} Y_{rr} + V_{s} \sum_{r \neq s}^{G} \sum_{t \neq s, r}^{G} B_{sr} Y_{r}}_{VT_{s}} + V_{s} \sum_{r \neq s}^{G} B_{sr} Y_{rs} + V_{s} \sum_{r \neq s}^{G} B_{sr} A_{rs} (I - A_{ss})^{-1} Y_{ss} + V_{s} \sum_{r \neq s}^{G} B_{sr} A_{rs} (I - A_{ss})^{-1} E_{s}} + \sum_{t \neq s}^{G} V_{t} B_{ts} \sum_{r \neq s}^{G} Y_{sr} + \sum_{t \neq s}^{G} V_{t} B_{ts} \sum_{r \neq s}^{G} A_{sr} (I - A_{rr})^{-1} Y_{rr} + \sum_{t \neq s}^{G} V_{t} B_{ts} \sum_{r \neq s}^{G} A_{sr} (I - A_{rr})^{-1} E_{s}}$$

- 이상의 식에 의해 총수출 중 국내생산 부가가치 비중(VAX), 수출 중 해외생산 부가가치 비중(VS), 중복계산액의 비중을 구할 수 있음.
- GVC 참여 정도는 국내 중간재 수출 중 본국으로 다시 돌아온 부가가치(VS1)와 국내 수출 중 해외생산 부가가치(VS)로 도출됨.

□ KWW의 총수출 분해 결과의 문제점

- 산업 수준의 교역자료를 합산했을 때 양자 수준에서 부가가치 수출이 총수출을 상회하는 불일치성 발생
- 전방연계와 후방연계 측정치의 차이 발생

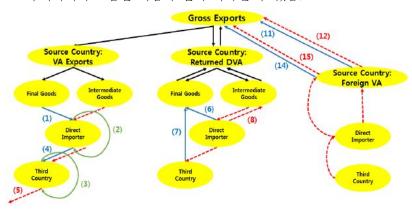
- 이상 불일치의 원인에 대한 예시



B국에서 A국으로의 총수출: 3100달러(부가가치 3100달러)

B국에서 A국으로 BM산업의 총수출: 2100달러(부가가치 전방연계 3000달러, 부가가치 후방연계 2000달러)

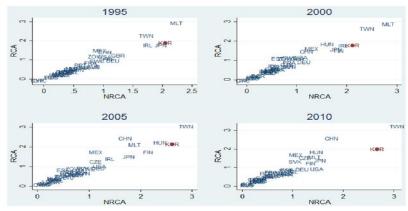
B국에서 D국으로 총수출: 0달러(부가가치 전방연계 3100달러, 부가가치 후방연계 3100달러)


□ WWZ의 총수출 분해 방법을 활용한 부가가치 수출 계산

- 이상 그림이 예시하는 부가가치의 흐름을 토대로 해외생산 부가가치에서 제3국의 기여를 고려하여 S국에서 R국으로의 총수출을 다음과 같이 분해함.

$$E_{s}^{r} = DVA_{s}^{r} + RVA_{s}^{r} + \underbrace{IVA_{s}^{r} + ThVA_{s}^{r}}_{FVA_{s}^{r}} + PDC_{s}^{r}$$

- 이상 식에 의해 도출되는 변수와 그 변수의 계산시 고려하는 부가가치의 흐름을 다음과 같이 나타낼 수 있음.

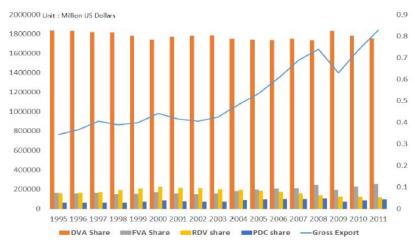


□ WWZ에 따른 한국의 총수출 분해 결과

- 부가가치 수출 비중(VAX)를 사용하여 RCA(NRCA)를 계산함.

$$NRCA_{i}^{r} = \left(\frac{VAX_{F,i}^{r} + RVA_{F,i}^{r}}{\sum_{i=1}^{N} \left(VAX_{F,i}^{r} + RVA_{F,i}^{r}\right)}\right) \left(\frac{\sum_{r=1}^{G} \left(VAX_{F,i}^{r} + RVA_{F,i}^{r}\right)}{\sum_{r=1}^{G} \sum_{i=1}^{N} \left(VAX_{F,i}^{r} + RVA_{F,i}^{r}\right)}\right)^{-1}$$

- NRCA로 측정한 한국의 비교우위는 2000년 이후 크게 향상됨.


- 미국과 비교할 때 한국의 총수출 중 FVA는 큰 반면 RDV는 작게 나타남.

한국의 총수출 분해 결과

KIED

미국의 총수출 분해 결과

2) 토론 내용

- □ GVC 하에서 부가가치 기준으로 무역량을 파악해기 위해 필요한 국제투입산출 관계 자료원에 대한 정보 공유
- Made in the World라는 이름으로 OECD와 WTO가 협력하여 부가가치기준 무역(Trade in Value Added, TiVA)통계와 지표를 제공하고 있음.
- 이와는 별개로 EU 위원회의 지원으로 좀 더 포괄적인 세계투입산출표(World Input-Output Database, WIOD)도 작성되어 공표되어 현재 활발히 연구되고 있으며, 오늘 논의는 이의 활용 방법을 구체적으로 제시하기 위함임.
- GTAP(Global Trade Analysis Project)를 이용해 국제 산업연관표를 작성하기도 하나, 간헐적인 업데이트, 가장 최근 자료가 2007년 기준이므로 부가가치 교역자료를 시계열로 구축할 수 없음.
- GVC에서 중요한 역할을 담당하는 동남아 국가의 투입산출 관계에 대한 자료가 부재함.

- JETRO의 자료는 아시아 국가를 대상으로 하나 포함하는 국가수가 적고 2008년이 가장 최근 자료라는 문제가 있어 급변하는 부가가치 교역을 분석하기는 매우 미흡함.

전문가품 토의자료

- UNCTAD의 투입산출표는 대부분의 국가를 포함하나 자료원이 아직 비공개이고, 관련 보고서에서 연도에 따라 집계방식이 달라진다고 언급하고 있어, 실제 데이터를 획득하여 분석해야 볼 필요가 있음.
- 현재로서는 WIOD를 사용하여 분석한 선행연구가 잘 정리되어 있고 OECD 홈페이지에서 데이터를 쉽게 입수할 수 있어 부가가치 교역을 시작하는 연구로 WIOD를 사용하는 것이 가장 현실적인 접근으로 보임.
- □ 산업별, 수출대상 국가별 총수출을 부가가치 원천별로 분해한 DB 구축의 필요성 공유
- WIOD를 토대로 초점이 되는 대상국가(군)별 분석이 용이하도록 부가가치사슬 구조 파악에 기초가 되는 데이터베이스 구축하는 것임.
- 기존에 널리 사용된 전방연계(forward-linkage) 방식 외에 후방연계(backward-linkage)을 함께 고려해야 함.
- 기존의 방식에서 국내 기여 부가가치 분이 후방연계까지 고려했을 때 과소평가 되는 문제가 해결됨.
- 각 부가가치 원천별로 분해했을 때, 결과적으로 나온 항들이 다시 총 수출로 합산 되도록 하여 정합성 문제를 해결함.
- 각 산업별 글로벌가치사슬구조 관련 지수 산출시 문제 되는 점들, 예컨대 VAX(총 수출 대비 부가가치수출 비중) 지수가 100%를 넘어가는 문제도 해결해야 함.
- □ 세계투입산출표를 활용하여 각국 총수출의 실제 부가가치 창출에 기여도를 측정한 논문들에 대한 토론
- Hummels, Yishii and Yi(2001)는 10개 OECD 국가들의 투입-산출표를 이용하여 수직 특화가 차지하는 비중을 계산하고 수출된 재화에서 수입된 중간재가 차지하는 비중인 VS이라는

전문가풀 토의자료 | 20140926

- 지수를 정의하며, 이때 HYY(2001)가 제시하는 계산 방식들은 산업별로 분석할 경우 전방연계에 초점을 맞추게 됨.
- 양국 간 수출을 보여주는 데이터가 없다는 한계로 인해 HYY(2001)에서는 계산되지 않았으나 후에 KWW(2014)가 VS 지수와 다른 관점에서 수직 특화를 표현하는 지수인 VS1을 제시하였는데, 이는 중간재 수출이 타 국가에서 생산된 재화의 수출에 사용된 정도를 측정함.
- Johnson & Noguera(2012)는 GTAP 데이터를 사용해 총 산출에서 부가가치가 차지하는 비중인 VAX 지수를 통해 생산의 분업화 정도를 측정함.
- 즉, 전 세계 투입-산출표를 이용하여 총수출 데이터에서 각 국의 국내 부가가치 기여분을 계산한 것임.
- KWW(2014)는 JN(2012)의 방법론을 일반화하여 총 수출을 부가가치 원천별로 분해하는 방법을 제시하는데, 이는 JN(2012)에서 제시한 VAX 지수 계산 방법과 HYY(2001)에서 제시된 수직 특화 지수를 계산하는 방법들을 일반화한 것으로 볼 수 있음.
- WWZ(2012)는 KWW(2014)의 방법에서 고려되지 않는 후방연계도 함께 고려하여 교역상대국, 산업별로도 정합성이 맞도록 총수출 분해 방법을 정교한 것으로 이해하면 됨.
- □ 기존 논문에서 도출된 각종 지수와 그것의 문제점에 대한 토론
- 부가가치사슬 관련 연구들에서 사용하는 기존 방법론인 JN(2012), KWW(2014)의 방법론들의 경우 세부 산업이나 수출 대상국별 분석을 할 때 용이하지 않은 점들이 있음.
- 총량 수준의 무역 데이터를 부가가치의 원천을 기준으로 나누는 기존의 방법론들의 경우 전방 연계만 고려하는데, 이럴 경우, 부가가치의 원천 별로 나눠진 수출 데이터를 합산 할 때 총량 수준의 수출 데이터와 맞지 않는 문제 발생함.
- 이는 전방 연계 방식의 방법론의 경우 한 산업의 부가가치 기여분이 같은 국가의 다른 산업에서 온 부가가치 기여분을 무시하기 때문임.

- 후방연계 방식의 경우 분석 대상이 되는 산업이 같은 국가의 다른 산업에 대한 총수출에서의 부가가치 기여분을 무시함.
- 총량 수준의 무역 데이터와 정합성을 유지하기 위해서 전후방연관 관계를 모두 고려한 WWZ(2014)의 방법론을 사용하여 산업 간 파급효과를 보다 엄밀히 분석할 필요가 있음.
- □ WWZ(2014) 방법론을 적용하여 총수출을 분해한 결과로서 총액 기준 수출은 수입된 중간재의 가치까지 포함되어 중복계산의 문제가 발생하고 이에 따라 양자 간 무역수지에서 왜곡 발생
- 미국의 대중 무역수지는 부가가치 기준으로 측정하면 2009년 기준 25% 감소함(1760억 달러에서 1310억 달러로 감소).
- 한국의 경우 대중 무역수지 흑자가 569억 달러에서 104억 달러로 대폭 감소하며, 한국의 부가가치가 중국에서 다시 제3국으로 수출됨을 의미함.
- 이렇게 총액 기준 수출은 국가 간의 무역수지를 실질적으로 과대 또는 과소평가함.
- □ WWZ(2014) 방법론을 적용하여 총수출을 분해한 결과로서, 한국의 부가가치 무역구조에 대해 논의, 특히 한국의 주력수출산업인 전자산업의 총수출 분해결과에 대해 심층 토론
- 제조업 전체의 경우 한국의 제조업 총수출에서 국내부가가치의 기여분이 점차 낮아지며, 외국이 한국의 수출에 기여한 해외기여부가가치가 증가한 것을 확인할 수 있음.
- 자동차, 전자 등 주력 수출산업에서 외국의 수입중간재를 사용하는 등 해외기여분의 비중이 높아지고 있음을 의미하는 한편, 수출이 국내 경제에 미치는 영향이 작아지고 있음.
- 한국 전자산업의 총수출과 부가가치수출은 꾸준히 증가하는 추세 총수출에 비해 부가가치수출의 증가폭은 낮아, 국내 부가가치 수출의 절대적인 양은 증가하지만, 총수출 증가분에 비해 국내 생산 부가가치의 증가속도가 낮음.
- 전자산업에서 국내부가가치기여분이 감소하는 것은 전세계적인

- 분업화의 진전에 영향을 받은 동시에 생산과정에 있어서 대외의존도가 증가함을 암시한다고 판단됨.
- 한국 전자산업의 총수출에서 해외부가가치가 차지하는 비중이 증가하는 것은 한국 전자산업이 해외의 중간재를 수입해서 가공해 재수출하는 양상이 더욱 뚜렷해짐과 동시에 해외에 비해 국내 전자산업의 추가적인 부가가치 기여가 낮음을 의미함.
- 다시 말해서 중간재교역의 비중이 증가하는 국제적인 양상을 반영 하면서, 국내 전자산업의 경쟁력이 약화되는 국내외 요인을 모두 반영한다고 볼 수 있음.
- 한편, 국내 전자산업에서 해외로부터 국내로 돌아오는 부가가치가 총수출에서 차지하는 비중이 거의 없음.
- 생산단계에서 보다 원천을 담당하는 국가들의 경우 중간재 수출이 최종적으로 국내로 되돌아오는 비중이 높은 반면, 한국은 이러한 경우가 적은 것으로 해석됨.
- 한국과 주요 국가와의 부가가치 교역을 살펴보면, 한국의 총수출에서 주요국의 부가가치 기여분을 최종재와 중간재로 나누어 볼 때, 중국 의 영향력이 급격하게 증대되며 미국과 일본이 차지하는 비중은 줄 어듦이 나타남.
- □ 결론적으로 한국의 무역구조를 GVC 구조속에서 다각적으로 파악할 필요성에 대한 문제의식의 확인
- 국제적 분업구조가 세분화된 산업의 경우 최종재 수출을 기반으로 한 비교우위 분석은 왜곡의 우려가 있음.
- 전 세계 총생산 대비 총수출에서 최종재에 비해 중간재의 비중이 지속적으로 증가하고 있은 추세이며 한국의 수출구조 역시 최종재 보다는 중간재 비중이 높음.
- 총량 수준의 무역 데이터의 경우, 중복 계산(double counting)의 문제로 인해 국제가치사슬에서 하부구조에 위치한 국가들의 경우 총 수출이 실제 부가가치 기여분을 과대평가하는 경향이 있음.
- 이러한 현상은 특히 전기전자와 정보통신 산업의 제품에서 두드러지며, WTO나 OECD 등에서는 이러한 다국적 생산품(Made in the World)에 대한 연구를 최근 활발히 진행하고 있음.

- 추가적으로 부가가치 기준 무역자료에 기반하여 기존의 경쟁력 지수와 비교 분석하고, 부가가치 기준 실질실효환율을 활용하여 수직적 분업 환경에 있는 국가의 산업별 국제 경쟁력을 재평가해야 할 필요도 있음.
- 정책적 관점에서 총액기준으로 막대한 수출 실적을 기록하고 있지만 높은 수입 중간재 비중과 실질 부가가치 기여도가 낮은 산업과 적은 수출실적에도 국내 부가가치 또는 고용창출 기여도가 상대적으로 높은 산업 중 어느 산업을 지원할 것인가의 문제임.
- 중소기업 수출지원과 병행하여 가치사슬 분석을 통해 국내산업의 수출에 대한 간접적 기여와 물류 등 서비스의 수출 기여 제고를 위한 방안 모색이 요구됨.