A Social Norm on Working Hours and Business Cycles

Eunseong Ma Yonsei University

Macro Research Group Seminar December 2, 2022

イロト 不得 トイヨト イヨト 二日

1/41

Labor supply dynamics is the heart of business cycle studies (Hansen, 1985; Chang and Kim, 2007; Ohanian and Raffo, 2012).

- Labor supply dynamics is the heart of business cycle studies (Hansen, 1985; Chang and Kim, 2007; Ohanian and Raffo, 2012).
- There have been recent advances in modeling aggregate labor supply.
 - The importance of extensive margin (Heckman, 1984; Hansen, 1985).
 - Part- and full-time work dynamics (Daniel and Lale, 2019).
 - Adjustment along both intensive and extensive margins (Rogerson and Wallenius, 2009; Chang et al., 2019).

- Labor supply dynamics is the heart of business cycle studies (Hansen, 1985; Chang and Kim, 2007; Ohanian and Raffo, 2012).
- There have been recent advances in modeling aggregate labor supply.
 - The importance of extensive margin (Heckman, 1984; Hansen, 1985).
 - Part- and full-time work dynamics (Daniel and Lale, 2019).
 - Adjustment along both intensive and extensive margins (Rogerson and Wallenius, 2009; Chang et al., 2019).
- What is missing in the literature is the role of a social norm on working hours—working for around 40 hours per week.

- In fact, the social norm plays a crucial role in household's labor supply decision.
 - Due to the social norm, more than 40 percent of US households work for around 40 hours per week.
 - It affects a decision of part- or full-time work and the transition between them.

- In fact, the social norm plays a crucial role in household's labor supply decision.
 - Due to the social norm, more than 40 percent of US households work for around 40 hours per week.
 - It affects a decision of part- or full-time work and the transition between them.
- This paper studies the role of the social norm in shaping
 - ▶ i) cross-sectional distribution of hours,
 - ▶ ii) its business-cycle implications.

What I Do

Data: summarize empirical facts on working hours distributions and part- and full-time work dynamics.

What I Do

- Data: summarize empirical facts on working hours distributions and part- and full-time work dynamics.
- Model: develop a heterogeneous-agent model with a social norm on hours worked.
 - 1) Market incompleteness: household-level idiosyncratic shocks
 - Rich household heterogeneity
 - 2) **Social norm on working hours:** utility costs when deviating from 40 hours
 - Disperse hours distribution with a spike at 40 hours
 - Three employment status: nonemployment, part- and full-time
 - Both lumpy and smooth labor supply decisions
 - Heterogeneous intensive and extensive labor supply elasticities

What I Find

Empirical Analysis

- Disperse hours distribution with a spike at 40 hours.
- Relatively many income- and wealth-poor are binding to the social norm.
- Among the intensive margins, full-time worker's hours adjustment is more important rather than the transition between PT and FT.

What I Find

Empirical Analysis

- Disperse hours distribution with a spike at 40 hours.
- Relatively many income- and wealth-poor are binding to the social norm.
- Among the intensive margins, full-time worker's hours adjustment is more important rather than the transition between PT and FT.

Model part:

- The social norm plays a crucial role in replicating the distribution of working hours.
- It can explain the relative importance of full-time worker's hours adjustment.

Some Facts on Hours Worked

Usual Weekly Hours

< □ > < @ > < 볼 > < 볼 > 볼 ∽ Q @ 7/41

Annual Hours

<ロト < 回 ト < 画 ト < 画 ト < 画 ト < 画 ト 8/41

The Spike Distribution

2

イロト イロト イヨト イヨト

Employment Distribution

Part-time Worker Distribution

Full-time Worker Distribution

Transition between Employment Status

		t+1					
		Not Work	Part Time	Full Time			
	Not Work	81.2	14.4	4.4			
t	Part Time	18.4	51.0	30.5			
	Full Time	2.6	7.7	89.7			

Business Cycle Moments for PT and FT

	Н	Е	h
$\rho(Y,x)$	0.89	0.83	0.79
$\sigma(x)/\sigma(Y)$	0.96	0.64	0.41
	H _F	S _F	h _F
$\rho(Y, x)$	0.90	0.79	0.66
$\sigma(x)/\sigma(Y)$	1.20	0.42	0.33
	H _P	S _P	h _P
$\rho(Y, x)$	-0.57	-0.79	-0.21
$\sigma(x)/\sigma(Y)$	0.93	1.24	0.40
	$\frac{\sigma(x)/\sigma(Y)}{\rho(Y,x)}$ $\frac{\rho(Y,x)}{\sigma(x)/\sigma(Y)}$ $\rho(Y,x)$	$ \begin{array}{c} \rho(Y, x) & 0.89 \\ \sigma(x)/\sigma(Y) & 0.96 \\ \hline \\ \mu_F \\ \rho(Y, x) & 0.90 \\ \sigma(x)/\sigma(Y) & 1.20 \\ \hline \\ \mu_P \\ \rho(Y, x) & -0.57 \\ \end{array} $	$\begin{array}{c cccc} \rho(Y,x) & 0.89 & 0.83 \\ \sigma(x)/\sigma(Y) & 0.96 & 0.64 \\ \hline & H_F & S_F \\ \hline \rho(Y,x) & 0.90 & 0.79 \\ \sigma(x)/\sigma(Y) & 1.20 & 0.42 \\ \hline & H_P & S_P \\ \hline \rho(Y,x) & -0.57 & -0.79 \end{array}$

Counterfactual Analysis

	$\sigma(x)/\sigma(Y)$							
	Н	h	H_F	S _F	h _F	H_P	S_P	h_P
Actual	0.96	0.41	1.20	0.42	0.33	0.93	1.24	0.40
No h _P	0.96	0.41	1.20	0.42	0.33	0.84	1.24	0.00
No h _F	0.79	0.19	1.00	0.42	0.00	0.93	1.24	0.40
No TR.	0.80	0.28	0.84	0.00	0.33	0.70	0.00	0.40

- Transition between PT and FT work is important (Daniel and Lale, 2019).
- New finding: the full-time workers' intensive margin plays a crucial role in accounting for the total intensive dynamics.

Model

Heterogeneity

- Two types of heterogeneity: heterogeneous labor productivity (x) and time-discount factor (β).
- 1. Labor productivity
 - Households face idiosyncratic labor productivity shocks, x, which follows AR(1) process in logs:

$$\log x' = \rho_x \log x + \varepsilon_x, \quad \varepsilon_x \stackrel{iid}{\sim} \mathcal{N}(0, \sigma_x^2).$$

- 2. Time-discount factor
 - ▶ β can take on two values, i.e., $\beta \in \mathbf{S}_{\beta} = \{\beta_L, \beta_H\}$, where $0 < \beta_L < \beta_H < 1$.
 - Follow a discrete-time two-state Markov chain with transition matrix, **Q**^β.
- Incomplete asset market: Households cannot issue any assets contingent on their future idiosyncratic risks.

Household

A household maximizes her expected lifetime utility consumption, c_t, and hours of work, h_t:

$$\max_{\{c_t, a_{t+1}, h_t\}_{t=0}^{\infty}} \mathbb{E}_0\left[\sum_{t=0}^{\infty} B_t\left(\log c_t - \chi \frac{h_t^{1+1/\gamma}}{1+1/\gamma}\right) + \xi\right] s.t.$$

$$c_t + a_{t+1} = w_t x_t h_t + (1 + r_t) a_t,$$

$$a_{t+1} \geq \underline{a}$$
.

 γ > 0: curvature parameter for labor supply, and B_t = ∏^t_{k=0} β_k, and ξ is a (dis)utility term for employment status.

Extensive Margin of Labor Supply

- Extensive margin of labor supply: employment (h > 0) and nonemployment (h = 0).
- Non-employed workers enjoy home production, ξ, which depends on asset.
 - $\xi(a) (\geq 0)$, depends on the level of asset such that:

 $\xi(a) = \phi_1 [1 + \max{a, 0}]^{-\phi_2}$

Non-employed worker's value function:

$$V^{N}(\theta, \Theta) = \max_{c, a'} \{ \log c + \xi + \beta \mathbb{E} \left[V(\theta', \Theta') \right] \} s.t.$$

 $c + a' = (1 + r)a,$
 $\mu' = \mathbb{T}(\Theta)$

where \mathbb{T} is a transition operator for μ .

Intensive Margin of Labor Supply

 A social norm on hours endogenously generate part- and full-time workers

- Upon employment,
 - a household can make a decision for part- and full-time work
 - should pay cost in utility terms, i.e., ξ < 0, when their hours deviate from *the social norm hours*, *h*:

$$\xi = -\kappa \left| h - \overline{h} \right|$$

Intensive Margin of Labor Supply

Part-time worker's value function:
$$V^{P}(\theta, \Theta) = \max_{c,h,a'} \left\{ \log c - \chi \frac{h^{1+1/\gamma}}{1+1/\gamma} + \xi + \beta \mathbb{E} \left[V(\theta', \Theta') \right] \right\}$$
s.t. $c + a' = wxh + (1 + r)a$,
and $h \in (0, \overline{h})$

► Full-time worker's value function:

$$V^{F}(\theta, \Theta) = \max_{c,h,a'} \left\{ \log c - \chi \frac{h^{1+1/\gamma}}{1+1/\gamma} + \xi + \beta \mathbb{E} \left[V(\theta', \Theta') \right] \right\}$$
s.t. $c + a' = wxh + (1 + r)a$,
and $h \in [\overline{h}, 1]$

Labor Supply Decision

• The employment decision, $h(\theta, \Theta)$, for a household is:

$$V(\theta,\Theta) = \max_{h \in [0,1]} \left\{ V^{P}(\theta,\Theta), V^{F}(\theta,\Theta), V^{N}(\theta,\Theta) \right\}.$$

Representative Firm

The representative firm demands labor and capital in order to maximize current profits:

$$\Pi = \max_{K,L} \left\{ ZL^{\alpha}K^{1-\alpha} - wL - (r+\delta)K \right\}.$$

where Z is aggregate productivity, and δ is the depreciation rate of capital. Z follows a AR(1) process:

$$Z' = (1 - \rho_A) + \rho_A Z + \varepsilon_A$$
 with $\varepsilon_A \stackrel{iid}{\sim} \mathcal{N}(0, \sigma_A^2),$

Optimality conditions for the firm are standard: marginal products are equalized to the cost of each factor.

Result I

Steady-state Results

Wealth and Income Distributions

		Quintile				
	1st	2nd	3rd	4th	5th	Gini
	WEA	LTH D	ISTRIBUT	TION		
Data						
SCF 1992	-0.39	1.74	5.72	13.43	79.49	0.78
PSID 1994	-1.22	0.88	4.98	14.68	80.68	0.79
Model	-0.16	0.36	4.14	16.31	79.35	0.78
	Inco	ome Di	STRIBUT	ION		
Data						
SCF 1992	2.18	6.63	11.80	19.47	59.91	0.57
PSID 1994	-0.27	5.06	13.94	24.80	56.48	0.57
Model	0.26	3.81	11.79	23.75	60.38	0.58

Key Moments

Moment	Data	Model
Targeted		
Employment rate	0.70	0.70
Share of usual hours at \overline{h}	0.52	0.70
Gini coefficient for earnings	0.63	0.63
Gini coefficient for wealth	0.78	0.78
Untargeted		
Gini coefficient for income	0.57	0.58
CV of at usual hours	0.25	0.20
CV of at annual hours	0.35	0.31
Share of FT workers	0.78	0.78
Share of annual hours at \overline{h}	0.40	0.45

・ロト・日本・日本・日本・日本・今日・

26 / 41

Usual Hours Distribution

The Spike Distribution

The Spike Distribution

Annual Hours Distribution

Role of the Social Norm

31 / 41

Role of Hetero. Home Production

32 / 41

Transition Between PT and FT

	Data							
		t+1						
		Not Work	Part Time	Full Time				
	Not Work	81.2	14.4	4.4				
t	Part Time	18.4	51.0	30.5				
	Full Time	2.6	7.7	89.7				

	Model							
		t+1						
		Not Work	Part Time	Full Time				
	Not Work	73.7	21.3	4.9				
t	Part Time	14.5	31.2	54.3				
	Full Time	1.0	15.7	83.2				

Result II

Business Cycles

Aggregate IRFs

<ロト < 回 ト < 巨 ト < 巨 ト ミ の < () 35 / 41

Key Business Cycle Moments (qauarterly)

Relative std.	С	Ι	Н	Ε	H/E	Gini
Data	0.55	3.11	0.79	0.63	0.19	0.55
Model	0.42	3.20	0.65	0.57	0.10	0.24
Corr. with Y	С	Ι	Н	Ε	H/E	Gini
Data	0.77	0.92	0.88	0.81	0.48	-0.50
Model	0.91	0.97	0.83	0.82	0.75	-0.81

PT-FT Work Dynamics

		Data			Model	
	Н	Ε	h	Н	Ε	h
$\rho(Y,x)$	0.89	0.83	0.79	0.77	0.45	0.79
$\sigma(x)/\sigma(Y)$	0.96	0.64	0.41	0.40	0.30	0.18
	H_F	S _F	h _F	H _F	S _F	h _F
$\rho(Y,x)$	0.90	0.79	0.66	0.72	0.30	0.75
$\sigma(x)/\sigma(Y)$	1.20	0.42	0.33	0.57	0.42	0.16
	H_P	S_P	h _P	H _P	S _P	h _P
$\rho(Y,x)$	-0.57	-0.79	-0.21	-0.13	-0.30	0.37
$\sigma(x)/\sigma(Y)$	0.93	1.24	0.40	1.63	1.56	0.21

Counterfactual Analysis

	$\sigma(x)/\sigma(Y)$							
	Н	h	H_F	S_F	h _F	H_P	S_P	h _P
Actual	0.40	0.18	0.57	0.42	0.16	1.63	1.56	0.21
No h _P	0.39	0.16	0.57	0.42	0.16	1.61	1.56	0.00
No h _F	0.31	0.09	0.50	0.42	0.00	1.63	1.56	0.21
No TR.	0.39	0.15	0.40	0.00	0.16	0.40	0.00	0.21

Role of the Social Norm

	Percent Change in $\sigma(h)/\sigma(Y)$					
	Data	Benchmark	No Social Norm			
No h _P	0%	-11%	-20%			
No h _F	-53%	-50%	-43%			
No TR.	-31%	-17%	-9%			

Solving Hours-productivity Puzzle

	Corr(H, Y/H)
Data	0.23
Benchmark	0.46
No Social Norm	0.51
Homo. Home Production	0.83

Conclusion

- This paper studies the role of the social norm in shaping cross-sectional distribution of hours and its business-cycle implications.
- To this end, I develop a heterogeneous-agent model with a social norm on hours worked.
- I find that the social norm can replicate silent features of the hours distribution and hours dynamics over the business cycle found in the data.