A Social Norm on Working Hours and Business Cycles

Eunseong Ma
Yonsei University

Macro Research Group Seminar
December 2, 2022

Introduction

- Labor supply dynamics is the heart of business cycle studies (Hansen, 1985; Chang and Kim, 2007; Ohanian and Raffo, 2012).

Introduction

- Labor supply dynamics is the heart of business cycle studies (Hansen, 1985; Chang and Kim, 2007; Ohanian and Raffo, 2012).
- There have been recent advances in modeling aggregate labor supply.
- The importance of extensive margin (Heckman, 1984; Hansen, 1985).
- Part- and full-time work dynamics (Daniel and Lale, 2019).
- Adjustment along both intensive and extensive margins (Rogerson and Wallenius, 2009; Chang et al., 2019).

Introduction

- Labor supply dynamics is the heart of business cycle studies (Hansen, 1985; Chang and Kim, 2007; Ohanian and Raffo, 2012).
- There have been recent advances in modeling aggregate labor supply.
- The importance of extensive margin (Heckman, 1984; Hansen, 1985).
- Part- and full-time work dynamics (Daniel and Lale, 2019).
- Adjustment along both intensive and extensive margins (Rogerson and Wallenius, 2009; Chang et al., 2019).
- What is missing in the literature is the role of a social norm on working hours-working for around 40 hours per week.

Introduction

- In fact, the social norm plays a crucial role in household's labor supply decision.
- Due to the social norm, more than 40 percent of US households work for around 40 hours per week.
- It affects a decision of part- or full-time work and the transition between them.

Introduction

- In fact, the social norm plays a crucial role in household's labor supply decision.
- Due to the social norm, more than 40 percent of US households work for around 40 hours per week.
- It affects a decision of part- or full-time work and the transition between them.
- This paper studies the role of the social norm in shaping
- i) cross-sectional distribution of hours,
- ii) its business-cycle implications.

What I Do

- Data: summarize empirical facts on working hours distributions and part- and full-time work dynamics.

What I Do

- Data: summarize empirical facts on working hours distributions and part- and full-time work dynamics.
- Model: develop a heterogeneous-agent model with a social norm on hours worked.

1) Market incompleteness: household-level idiosyncratic shocks

- Rich household heterogeneity

2) Social norm on working hours: utility costs when deviating from 40 hours

- Disperse hours distribution with a spike at 40 hours
- Three employment status: nonemployment, part- and full-time
- Both lumpy and smooth labor supply decisions
- Heterogeneous intensive and extensive labor supply elasticities

What I Find

- Empirical Analysis

- Disperse hours distribution with a spike at 40 hours.
- Relatively many income- and wealth-poor are binding to the social norm.
- Among the intensive margins, full-time worker's hours adjustment is more important rather than the transition between PT and FT.

What I Find

- Empirical Analysis
- Disperse hours distribution with a spike at 40 hours.
- Relatively many income- and wealth-poor are binding to the social norm.
- Among the intensive margins, full-time worker's hours adjustment is more important rather than the transition between PT and FT.
- Model part:
- The social norm plays a crucial role in replicating the distribution of working hours.
- It can explain the relative importance of full-time worker's hours adjustment.

Some Facts on Hours Worked

Usual Weekly Hours

Annual Hours

The Spike Distribution

Employment Distribution

Part-time Worker Distribution

Full-time Worker Distribution

Transition between Employment Status

$t+1$				
	Not Work	Part Time	Full Time	
t	Not Work	81.2	14.4	4.4
	Part Time	18.4	51.0	30.5
	Full Time	2.6	7.7	89.7

Business Cycle Moments for PT and FT

		H	E	h
Total	$\rho(Y, x)$	0.89	0.83	0.79
	$\sigma(x) / \sigma(Y)$	0.96	0.64	0.41
Full Time	$\rho(Y, x)$	H_{F}	S_{F}	h_{F}
	$\sigma(x) / \sigma(Y)$	1.90	0.79	0.66
		H_{P}	S_{P}	h_{P}
Part Time	$\rho(Y, x)$	-0.57	-0.79	-0.21
	$\sigma(x) / \sigma(Y)$	0.93	1.24	0.40

Counterfactual Analysis

		$\sigma(x) / \sigma(Y)$							
	H	h	H_{F}	S_{F}	h_{F}	H_{P}	S_{P}	h_{P}	
Actual	0.96	0.41	1.20	0.42	0.33	0.93	1.24	0.40	
No h_{P}	$\mathbf{0 . 9 6}$	$\mathbf{0 . 4 1}$	1.20	0.42	0.33	0.84	1.24	$\mathbf{0 . 0 0}$	
No h	$\mathbf{0 . 7 9}$	$\mathbf{0 . 1 9}$	1.00	0.42	$\mathbf{0 . 0 0}$	0.93	1.24	0.40	
No TR.	$\mathbf{0 . 8 0}$	$\mathbf{0 . 2 8}$	0.84	$\mathbf{0 . 0 0}$	0.33	0.70	$\mathbf{0 . 0 0}$	0.40	

- Transition between PT and FT work is important (Daniel and Lale, 2019).
- New finding: the full-time workers' intensive margin plays a crucial role in accounting for the total intensive dynamics.

Model

Heterogeneity

- Two types of heterogeneity: heterogeneous labor productivity (x) and time-discount factor (β).

1. Labor productivity

- Households face idiosyncratic labor productivity shocks, x, which follows $\operatorname{AR}(1)$ process in logs:

$$
\log x^{\prime}=\rho_{x} \log x+\varepsilon_{x}, \quad \varepsilon_{x} \stackrel{i i d}{\sim} \mathcal{N}\left(0, \sigma_{x}^{2}\right) .
$$

2. Time-discount factor

- β can take on two values, i.e., $\beta \in \mathbf{S}_{\beta}=\left\{\beta_{L}, \beta_{H}\right\}$, where $0<\beta_{L}<\beta_{H}<1$.
- Follow a discrete-time two-state Markov chain with transition matrix, \mathbf{Q}^{β}.
- Incomplete asset market: Households cannot issue any assets contingent on their future idiosyncratic risks.

Household

- A household maximizes her expected lifetime utility consumption, c_{t}, and hours of work, h_{t} :

$$
\begin{gathered}
\max _{\left\{c_{t}, a_{t+1}, h_{t}\right\}_{t=0}^{\infty}} \mathbb{E}_{0}\left[\sum_{t=0}^{\infty} B_{t}\left(\log c_{t}-\chi \frac{h_{t}^{1+1 / \gamma}}{1+1 / \gamma}\right)+\xi\right] \text { s.t. } \\
c_{t}+a_{t+1}=w_{t} x_{t} h_{t}+\left(1+r_{t}\right) a_{t} \\
a_{t+1} \geq \underline{a} .
\end{gathered}
$$

- $\gamma>0$: curvature parameter for labor supply, and $B_{t}=\prod_{k=0}^{t} \beta_{k}$, and ξ is a (dis)utility term for employment status.

Extensive Margin of Labor Supply

- Extensive margin of labor supply: employment ($h>0$) and nonemployment ($h=0$).
- Non-employed workers enjoy home production, ξ, which depends on asset.
- $\xi(a)(\geq 0)$, depends on the level of asset such that:

$$
\xi(a)=\phi_{1}[1+\max \{a, 0\}]^{-\phi_{2}}
$$

- Non-employed worker's value function:

$$
\begin{gathered}
V^{N}(\theta, \Theta)=\max _{c, a^{\prime}}\left\{\log c+\xi+\beta \mathbb{E}\left[V\left(\theta^{\prime}, \Theta^{\prime}\right)\right]\right\} \text { s.t. } \\
\qquad c+a^{\prime}=(1+r) a \\
\mu^{\prime}=\mathbb{T}(\Theta)
\end{gathered}
$$

where \mathbb{T} is a transition operator for μ.

Intensive Margin of Labor Supply

- A social norm on hours endogenously generate part- and full-time workers
- Upon employment,
- a household can make a decision for part- and full-time work
- should pay cost in utility terms, i.e., $\xi<0$, when their hours deviate from the social norm hours, \bar{h} :

$$
\xi=-\boldsymbol{\kappa}|h-\bar{h}|
$$

Intensive Margin of Labor Supply

- Part-time worker's value function:

$$
\begin{gathered}
V^{P}(\theta, \Theta)=\max _{c, h, a^{\prime}}\left\{\log c-\chi \frac{h^{1+1 / \gamma}}{1+1 / \gamma}+\xi+\beta \mathbb{E}\left[V\left(\theta^{\prime}, \Theta^{\prime}\right)\right]\right\} \\
\text { s.t. } c+a^{\prime}=w x h+(1+r) a, \\
\text { and } h \in(0, \bar{h})
\end{gathered}
$$

- Full-time worker's value function:

$$
\begin{gathered}
V^{F}(\theta, \Theta)=\max _{c, h, a^{\prime}}\left\{\log c-\chi \frac{h^{1+1 / \gamma}}{1+1 / \gamma}+\xi+\beta \mathbb{E}\left[V\left(\theta^{\prime}, \Theta^{\prime}\right)\right]\right\} \\
\text { s.t. } c+a^{\prime}=w \times h+(1+r) a, \\
\text { and } h \in[\bar{h}, 1]
\end{gathered}
$$

Labor Supply Decision

- The employment decision, $h(\theta, \Theta)$, for a household is:

$$
V(\theta, \Theta)=\max _{h \in[0,1]}\left\{V^{P}(\theta, \Theta), V^{F}(\theta, \Theta), V^{N}(\theta, \Theta)\right\}
$$

Representative Firm

- The representative firm demands labor and capital in order to maximize current profits:

$$
\Pi=\max _{K, L}\left\{Z L^{\alpha} K^{1-\alpha}-w L-(r+\delta) K\right\} .
$$

where Z is aggregate productivity, and δ is the depreciation rate of capital. Z follows a $\operatorname{AR}(1)$ process:

$$
Z^{\prime}=\left(1-\rho_{A}\right)+\rho_{A} Z+\varepsilon_{A} \quad \text { with } \quad \varepsilon_{A} \stackrel{i i d}{\sim} \mathcal{N}\left(0, \sigma_{A}^{2}\right)
$$

- Optimality conditions for the firm are standard: marginal products are equalized to the cost of each factor.

Result I

Steady-state Results

Wealth and Income Distributions

	Quintile					Gini
	1st	2nd	3rd	4th	5th	
Wealth Distribution						
Data						
SCF 1992	-0.39	1.74	5.72	13.43	79.49	0.78
PSID 1994	-1.22	0.88	4.98	14.68	80.68	0.79
Model	-0.16	0.36	4.14	16.31	79.35	0.78
Income Distribution						
Data						
SCF 1992	2.18	6.63	11.80	19.47	59.91	0.57
PSID 1994	-0.27	5.06	13.94	24.80	56.48	0.57
Model	0.26	3.81	11.79	23.75	60.38	0.58

Key Moments

Moment	Data	Model
Targeted		
Employment rate	0.70	0.70
Share of usual hours at \bar{h}	0.52	0.52
Gini coefficient for earnings	0.63	0.63
Gini coefficient for wealth	0.78	0.78
Untargeted	0.57	0.58
Gini coefficient for income	0.25	0.20
CV of at usual hours	0.35	0.31
CV of at annual hours	0.78	0.78
Share of FT workers	0.40	0.45
Share of annual hours at \bar{h}		

Usual Hours Distribution

The Spike Distribution

The Spike Distribution

Data \quad Model

Annual Hours Distribution

Role of the Social Norm

Role of Hetero. Home Production

Transition Between PT and FT

Data				
$t+1$				
		Not Work	Part Time	Full Time
t	Not Work	81.2	14.4	4.4
	Part Time	18.4	51.0	30.5
	Full Time	2.6	7.7	89.7

Model

$t+1$				
	Not Work	Part Time	Full Time	
t	Not Work	73.7	21.3	4.9
	Part Time	14.5	31.2	54.3
	Full Time	1.0	15.7	83.2

Result II

Business Cycles

Aggregate IRFs

Hours

Key Business Cycle Moments (qauarterly)

Relative std.	C	I	H	E	H / E	Gini
Data	0.55	3.11	0.79	0.63	0.19	0.55
Model	0.42	3.20	0.65	0.57	0.10	0.24
Corr. with Y	C	I	H	E	H / E	Gini
Data	0.77	0.92	0.88	0.81	0.48	-0.50
Model	0.91	0.97	0.83	0.82	0.75	-0.81

PT-FT Work Dynamics

	Data			Model		
	H	E	h	H	E	h
$\rho(Y, x)$	0.89	0.83	0.79	0.77	0.45	0.79
$\sigma(x) / \sigma(Y)$	0.96	0.64	0.41	0.40	0.30	0.18
	H_{F}	S_{F}	h_{F}	H_{F}	S_{F}	h_{F}
$\rho(Y, x)$	0.90	0.79	0.66	0.72	0.30	0.75
$\sigma(x) / \sigma(Y)$	1.20	0.42	0.33	0.57	0.42	0.16
	H_{P}	S_{P}	h_{P}	H_{P}	S_{P}	h_{P}
$\rho(Y, x)$	-0.57	-0.79	-0.21	-0.13	-0.30	0.37
$\sigma(x) / \sigma(Y)$	0.93	1.24	0.40	1.63	1.56	0.21

Counterfactual Analysis

$\sigma(x) / \sigma(Y)$								
	H	h	H_{F}	S_{F}	h_{F}	H_{P}	S_{P}	h_{P}
Actual	0.40	0.18	0.57	0.42	0.16	1.63	1.56	0.21

$\begin{array}{lllllllll}\text { Noh } h_{P} & \mathbf{0 . 3 9} & \mathbf{0 . 1 6} & 0.57 & 0.42 & 0.16 & 1.61 & 1.56 & \mathbf{0 . 0 0}\end{array}$
$\begin{array}{lllllllll}\text { Noh } h_{F} & 0.31 & 0.09 & 0.50 & 0.42 & 0.00 & 1.63 & 1.56 & 0.21\end{array}$
$\begin{array}{lllllllll}\text { No TR. } & 0.39 & \mathbf{0 . 1 5} & 0.40 & \mathbf{0 . 0 0} & 0.16 & 0.40 & \mathbf{0 . 0 0} & 0.21\end{array}$

Role of the Social Norm

		Percent Change in $\sigma(h) / \sigma(Y)$	
	Data	Benchmark	No Social Norm
No h_{P}	0%	-11%	-20%
No h_{F}	-53%	-50%	-43%
No TR.	-31%	-17%	-9%

Solving Hours-productivity Puzzle

	$\operatorname{Corr}(H, Y / H)$
Data	0.23
Benchmark	0.46
No Social Norm	0.51
Homo. Home Production	0.83

Conclusion

- This paper studies the role of the social norm in shaping cross-sectional distribution of hours and its business-cycle implications.
- To this end, I develop a heterogeneous-agent model with a social norm on hours worked.
- I find that the social norm can replicate silent features of the hours distribution and hours dynamics over the business cycle found in the data.

