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Abstract

We study a model of on-the-job search and optimal wage contracts under uncertainty about
both worker ability and match quality. Firms and workers update beliefs through random
output realizations, and the optimal contracts and search decisions respond differently to the
belief about ability and match quality. We show that the optimal wage has a continuous path
even when beliefs jump. The optimal contract exhibits wage cuts over tenure within a match
if the worker is valuable only to outside firms. A random promotion can be a result of the
optimal contract. We numerically calculate the optimal wage policy as a function of each
belief, identifying how the implications of learning can differ if uncertainty is about a worker
or match. The multidimensional aspect of learning can explain empirical phenomena which
are not easily understood in standard models: the adverse wage effects of previous job-to-job
transitions and the higher likelihood of wage cuts for high-wage/ability workers in firms.
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1 Introduction

When a person begins a career, she is uncertain about her talent “and” whether the firm is a good

fit for her. Both uncertainties resolve over time jointly, leading to different career choices and com-

pensations. While this story is intuitively appealing, few papers consider the learning and contract

problem when both uncertainties exist. For instance, previous papers with uncertain worker ability

abstract uncertainty in match quality (Blumen et al., 1955; Gonzalez and Shi, 2010; Papageorgiou,

2014; Carrillo-Tudela and Kaas, 2015), while papers with uncertain match quality assume observ-

able worker ability (Jovanovic, 1979, 1984; Moscarini, 2005; Menzio and Shi, 2010). Considering

only one aspect of learning can lead to different interpretations of the same labor market moments.

For instance, a longer tenure may suggest a better fit, but it can imply poor outside opportunities

due to a bad ability. Alternatively, it may associate with a good ability if the firm provides enough

performance-based payments. As such, what the observed wage and job transition patterns imply

depends on the underlying uncertainty structure and the payment scheme, but the lack of a unified

framework limits our understanding of how learning affects wages and job transitions. This paper

fills this gap by building a model of on-the-job search and optimal wage contracts with uncertainty

regarding worker ability and match quality.

In this paper, we incorporate Jovanovic (1979) type symmetric learning into the model of on-

the-job search and optimal contract (Burdett and Coles, 2003; Shi, 2009). A match’s output is a

stochastic process of which law depends on hidden match quality, either good or bad (Moscarini,

2005). We introduce general ability by assuming that hidden worker ability, either high or low,

affects the initial match quality draw: a high-quality worker is more likely to be a good fit for every

firm (Gonzalez and Shi, 2010). Thus, a history of output realizations is informative also for worker

ability. The labor market frictions are modeled by directed search. Both employed and unemployed

workers search for the next job, and their optimal search target changes when beliefs update. Firms

post a vacancy that commits a wage contract, which specifies wage payment contingent upon

public history. The optimal wage contract is well-defined between risk-neutral firms and risk-

averse workers in that the firm can only indirectly control the worker’s search decisions through
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future wage promises.

The first contribution of this paper is the theoretical characterization of the optimal wage con-

tract. We build a continuous-time model and heuristically derive an HJB-type equation with un-

certainty, contrary to previous literature that uses discrete-time approaches in similar environments

(Menzio and Shi, 2011; Balke and Lamadon, 2020). We dervie three qualitative features of the op-

timal contract over tenure. First, the optimal wage is continuous in tenure as in Burdett and Coles

(2003) and Shi (2009), even if beliefs discontinuously evolve. Firms compensate for a positive

shock by a higher wage growth rather than an immediate wage promotion because promising a

discontinuous wage path is sub-optimal to risk-averse workers. Second, the optimal wage is not

always increasing in tenure, in contrast to Burdett and Coles (2003) and Shi (2009). The wage

falls if the job value is negative for the current employer but positive for outside firms. In this case,

the current employer provides an incentive to leave the job through an on-the-job search, which

can happen when the worker’s ability is likely good, but the match quality is likely bad. Third, the

optimal contract may exhibit a random promotion during periods of flat wages. It occurs when the

firm needs to raise the expected promised value, but it is costly to raise the current value locally.

The second contribution of this paper is to represent the shape of the optimal contract as a

function of each belief separately. When underlying uncertainty is multidimensional, the beliefs

are also multidimensional and are challenging to interpret, even if the number of states is finite.

The specific information structure in this paper allows us to overcome this difficulty and represent

the optimal wage contract as a function of each belief dimension separately. We calibrate the model

and show that the optimal wage contract is increasing in the promised value while decreasing in

the ability and match-quality belief. It does not mean better workers are paid less because they

enjoy higher promised values on average.

The last contribution of this paper is to apply the model to understand empirical regularities.

We simulate the model and confirm that the model is consistent with well-known empirical regular-

ities such as declining job-to-job transitions and concave wage profiles over tenure. On top of that,

we answer two empirical questions that standard models do not easily answer. The first question
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is whether better workers stay at a job longer or leave for a better job quicker. Using the simulated

economy, we find that workers with a higher ability belief are paid better and stay at a job longer.

It confirms a negative performance-quit relationship observed in data (Salamin and Hom, 2005;

Hom et al., 2008). Note that the relationship is the opposite if the wage contract is fixed-wage,

which highlights the importance of performance-based payment to retain good workers (Lazear,

2000; Franceschelli et al., 2010). This negative ability-quit relationship generates a negative corre-

lation between the past job-to-job transitions and wages in data (Carrillo-Tudela and Kaas, 2015).

The ability uncertainty is essential for the negative correlation in that it becomes positive once

the ability uncertainty is eliminated, as in standard search models (Burdett and Mortensen, 1998;

Delacroix and Shi, 2006).

The second question is the characteristics of job stayers whose wages fall. Note that the optimal

wage contract does not exhibit wage cuts within a job if a match’s output depends on ability but not

on match quality, suggesting that it is essential to distinguish between ability and match quality.

The simulation reveals that the incidence of wage cuts is increasing in worker ability belief and

wage and decreasing in match quality belief. It is intuitive because these workers have higher

outside options but lower value to the current employer, which is what the theory predicts about

the necessary condition for wage cuts. It is consistent with recent empirical findings that many

firms cut the wages of a subset of workers, and they are highly paid on average (Park and Shin,

2017; Jardim et al., 2019).

Related literature: This paper is related to a large literature on labor market learning (Jo-

vanovic, 1979, 1984; Moscarini, 2005; Gonzalez and Shi, 2010; Papageorgiou, 2014; Carrillo-

Tudela and Kaas, 2015; Doppelt, 2016; Carrillo-Tudela and Kaas, 2015). This paper contributes

to this strand of literature by building a learning model with uncertainty about both general and

specific human capital, and labor market frictions. Beyond realism, the unified model allows us

to explain whether better workers stay at a job longer and the characteristics of workers who are

more likely to experience wage cuts.

This paper also contributes to a strand of literature that has studied the relationship between
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performance and worker turnover. While a negative correlation between performance and quits

is intuitive, theoretically (Jovanovic, 1984) and empirically (Salamin and Hom, 2005; Hom et

al., 2008), it is less clear how a worker’s innate ability is associated with quits. We show that the

negative correlation between ability and quits exists, but only when wages endogenously respond to

the belief, which is consistent with the view that performance payment is crucial to retaining good

workers (Lazear, 2000; Franceschelli et al., 2010). This explains a negative correlation between

job-to-job transitions and wages in data (Light and McGarry, 1998; Carrillo-Tudela and Kaas,

2015).

Lastly, this paper is close related to the literature on the optimal wage contract (Burdett and

Coles, 2003; Shi, 2009; Menzio and Shi, 2010; Fawcett and Shi, 2018; Balke and Lamadon, 2020).

To our knowledge, this is the first paper that incorporates learning, on-the-job search, and wage

contract with risk-averse workers in a unified framework. Li and Weng (2017) studies match-

specific uncertainty and on-the-job search, but they solve the social planner’s problem so that there

is no wage. In terms of modeling, Balke and Lamadon (2020) is close to our paper. Because of

the similar modeling choice, the optimal contract also has several similar features. The differ-

ence is that in Balke and Lamadon (2020), the multi-dimensional feature comes from exogenous

productivity shocks, while in our paper, the multi-dimensional feature comes through endogenous

learning. Also, we develop a continuous-time model that allows us to show that the wage path is

continuous regardless of the underlying uncertainty structure.

2 Model

2.1 Environment

Time is continuous. The labor market has a continuum of risk-averse workers with a geometrically

distributed lifespan. Workers exit the labor market at a fixed rate, and the same measure of newly-

born workers enter the labor market. We normalize the measure of workers in the labor market to
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one. The other side of the labor market consists of risk-neutral firms with free entry. Workers and

firms discount the future at the same rate, and we denote the effective discount rate by r, which is

the sum of the discount and labor market exit rates.

At each point in time, workers are either employed or unemployed. The employed workers are

paid according to their wage contracts, which will be explained later. They are separated from the

job voluntarily through on-the-job search and involuntarily into unemployment at a fixed rate of δ.

The unemployed workers receive a flow payoff b.

2.2 Production

A match between a worker and a firm produces output. The output process is stochastic, and its

process depends on the match-specific quality α, which is drawn at the beginning of a match. The

match quality is either one of two values α ∈ {αG, αB}, unobserved, and remains fixed within a

match (Jovanovic, 1979; Moscarini, 2005). We assume that 0 < αB < αG < 1 without loss of

generality.

A match produces output only occasionally. Specifically, a match receives a production oppor-

tunity at a Poisson rate of λ, independently of α. Denote the cumulative production opportunity

process by Yτ ∈ N. Upon an arrival of production opportunity at τ (dYτ = 1), a match succeeds

to produce the stock of output yτ = y > 0 with probability α, and fails so that produces nothing

(yτ = 0) with probability 1 − α. This output process implies that a match produces the output

stock y at a Poisson rate of λα, while not producing any output flow. Because αG > αB, a good

match produces the output more frequently than a bad match. Therefore, a successful production

raises the likelihood of a good match. However, the arrival of the production opportunity itself is

not informative because λ is independent of α.

A departure from the previous literature is that the initial draw of α depends on workers’ innate

ability γ ∈ {γH , γL}. Workers’ ability is unobserved and remains fixed during their lifetime. The

ability is drawn from the initial distribution P (γ = γH) = 1/2 when entering the labor market and
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affects the initial match quality draws as follows.

P (α = αG|γ = γH) = P (α = αB|γ = γL) = ρ ≥ 1/2 (1)

In words, an H-type (L-type) worker is more likely to be a good (bad) fit for every match. ρ governs

the degree of correlation between the ability and match quality. ρ = 1/2 means that worker ability

is homogeneous.

2.3 Information structure

Denote the history of production opportunities and their outcomes until tenure τ by Y τ =

{Yt, yt}0≤t≤τ . We assume that Y τ is public information so that even outside firms can observe

Y τ . This assumption eliminates complicated issues arising from asymmetric information between

inside and outside firms. It is not a restrictive assumption because the belief about the worker’s

ability is a sufficient statistic for outside firms, which can be inferred through various methods in

reality, such as reference checks and resumes. It is a common assumption in the previous literature

(Gonzalez and Shi, 2010; Doppelt, 2016; Fawcett and Shi, 2018).

The concept of the worker’s ability in this paper is similar to Gonzalez and Shi (2010) in that it

affects the distribution of the initial match quality draws. The difference is that the match quality is

immediately observed after meeting in Gonzalez and Shi (2010), while in this paper, workers and

firms slowly learn through output realization. This learning shapes how the belief evolves within

and across matches over the employment history. The belief process determines wage growth and

job transitions endogenously under the optimal contract setting, which is one of the key questions

this paper addresses.
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2.4 Learning

No learning occurs during unemployed because b is constant, and a match is an experience good.1

Thus, we only focus on learning within a match. Denote µτ = P (α = αG|hτ ), where hτ includes

Y τ for the current match, and belief about the worker’s ability at τ = 0. Given the output process,

µτ changes only when a production opportunity arises. Upon the arrival of a production opportu-

nity, the belief jumps to a new value depending on the production outcome. Denote the belief after

a successful production at τ by µS
τ , and the belief after a failure by µF

τ . By the Bayes’ rule,

µS
τ =

αGµτ−

αGµτ− + αB(1− µτ−)
, µF

τ =
(1− αG)µτ−

(1− αG)µτ− + (1− αB)(1− µτ−)
(2)

where µτ− = limt0↑τ µt0 . A successful production raises the belief about match quality µS
τ > µτ−,

while a failure reduces the belief µF
τ < µτ−. Once the belief jumps to a new level, it stays at the

level until the next production opportunity arrives. The initial belief µ0 is determined by the initial

belief about the worker’s ability.

The worker and the firm learn about the worker’s ability as well. Denote ητ = P (γ = γH |hτ ).

Note that Y τ is independent of γ conditional on α, meaning that the belief about the worker’s

ability is constant within a match conditional on α. Therefore,

P (γ = γH |α = αG, h
τ ) = P (γ = γH |α = αG, η0) =

η0ρ

η0ρ+ (1− η0)(1− ρ)
≡ RG(η0) (3)

P (γ = γH |α = αB, h
τ ) = P (γ = γH |α = αB, η0) =

η0(1− ρ)

η0(1− ρ) + (1− η0)ρ
≡ RB(η0) (4)

From Equation (3) and (4), the following relationship between ηt and µt can be derived.

P (γ = γH , α = αG|hτ ) = P (α = αG|hτ ) ·RG(η0) (5)

P (γ = γH , α = αB|hτ ) = P (α = αB|hτ ) ·RB(η0) (6)

⇒ ητ = µτRG(η0) + (1− µτ )RB(η0) (7)

1If firms observe an initial signal before match creation and make hiring decisions based on it, unemployed workers
also learn about their ability through job search failures while unemployed.
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It shows that the change in ητ is proportional to the change in µτ within a match, and the respon-

siveness is a function of the initial belief η0.

dητ = L(η0)dµτ , L(η) ≡ RG(η)−RB(η) (8)

Equation (8) implies that ητ is bounded away from 0 and 1 within a match. Intuitively, each match

is a match quality draw so that ητ is bounded above (below) by the case where a good (bad) match

quality draw is directly observed. It implies that Equation (9) holds.

η0
η0 + (1− η0)

ρ
1−ρ

≤ ητ ≤ η0

η0 + (1− η0)
1−ρ
ρ

(9)

Because the learning about ability is bounded, workers need to experience several matches to learn

about their abilities. It generates an additional incentive for workers to search for the next job

provided that workers prefer the resolution of uncertainty.

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

η

Figure 1: Learning slope L(η)

Figure 1 illustrates L(η). It is maximized at η = 1/2, meaning that the learning about the

worker’s ability is faster in a match with a larger initial uncertainty. Given that γ is initially drawn

from P (γ = H) = 1/2, workers with a shorter labor market experience learn about their ability

faster, and the learning slows down over the employment history on average.
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2.5 Search and matching

Search is directed. Firms post a vacancy with a wage contract, which will be explained in Section

2.6, and workers apply to a vacancy while observing all the wage contracts. The wage contracts can

be indexed by the lifetime value to the worker V and belief about worker ability η, implying that

a continuum of submarkets indexed by (V, η) exist. A market tightness θ(V, η) is specific to each

submarket, determining the job-finding rate and vacancy-filling rate. We denote the job-finding rate

function by p(θ(V, η)) and vacancy-filling rate function by q(θ(V, η)) = p(θ(V, η))/θ(V, η). We

impose standard conditions: p(θ) ∈ [0, p̄], p′(θ) > 0, p′′(θ) < 0, q(θ) ∈ [0, q̄], q′(θ) < 0, q′′(θ) < 0.

Consider a worker whose current continuation value is V , and belief about ability is η. The

optimal search decision for the worker is described by

R(V, η) ≡ max
V ′

p(θ(V ′, η))(V ′ − V ) (10)

Let F (V, η) denote the optimal search policy, and pF (V, η) ≡ p(θ(F (V, η), η)) denote the en-

dogenous job-finding rate induced by the optimal search. An unemployed worker solves the same

search problem where the continuation value is the value of the unemployed.

2.6 Contract

A vacancy in a submarket (V, η) commits a wage contract that delivers the lifetime value V ∈

[V , V ] to a worker with the ability belief η, where −∞ < V < V < ∞. To make the contract

space convex, we allow the firm can randomize wages using a public randomization device X(t).

To be specific, the wage at tenure τ is a function of the public history hτ = {Xτ , Y τ , η0}, where

Xτ is the history of X(t) realizations until τ .2 The worker earns the promised wage only if the

2Previous literature introduces a two-point lottery to make the firm’s value function concave (Menzio and Shi,
2011; Balke and Lamadon, 2020). There is another reason for us to introduce the public randomization device X(t).
As Staudigl and Steg (2017) mentioned, for the continuous-time limit model to be consistent with the discrete-time
approximations with frequent actions, we should consider the correlated equilibrium in the continuous-time. More-
over, in literature of continuous-time games including Sannikov (2007) and Bernard (2016), the public randomization
device plays an important role in making the set of equilibrium payoffs to be convex.
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worker stays at the match. Because the output process determines beliefs, the wage fully depends

on the beliefs about match quality and ability.

The optimal contract is the contract that maximizes the firm’s expected profit subject to the

promised lifetime value to the worker V , and given belief (µ, η). While firms can commit any

contract, only the optimal contract can exist in the market because of the free entry condition.

Several points are worth mentioning regarding the contractual environment. First, firms cannot

renegotiate or fire workers after hiring, while workers do not commit to staying at the job. Second,

the contract cannot depend on workers’ search outcomes or targets, meaning that firms cannot

counteroffer like in Postel-Vinay and Robin (2002). The two points imply that workers leave their

current job whenever a job search is successful, and firms can only indirectly affect workers’ search

decisions through promised value. This specific contractual environment is studied in previous

literature, such as Burdett and Coles (2003); Shi (2009); Menzio and Shi (2011) and Balke and

Lamadon (2020).

2.7 Value functions

Define the firms’ value function J(V, µ, η) as

J(V, µ, η) = sup
w̃={w̃t}∞t≥0

E
∫ ∞

0

e−
∫ t
0 (r+δ+sepF (Vs,ηs))ds

[
e−λtλα(µt)y − w̃t

]
dt (11)

with

Vs = E
∫ ∞

s

e−
∫ t
s (r+δ+sepF (Vτ ,ητ ))dτ [u(w̃t) + sepF (Vt, ηt)F (Vt, ηt) + δU(ηt)] dt, V = V0 (12)

where α(µ) = µαG+(1−µ)αB, w̃t ∈ ∆[w,w] with −∞ < w < w < ∞, and E is an expectation

with respect to the probability distribution induced by w = {w̃t}∞t≥0.

While Equation (11) and (12) are defined on the general contract space, it is difficult to consider

general dynamic contracts. Therefore, we focus on wage contracts that are recursively described
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by the state variable (V, µ, η) following the approach in previous literature (Menzio and Shi, 2011;

Fawcett and Shi, 2018; Balke and Lamadon, 2020).

In the recursive formulation, the value function J(V, µ, η) and optimal control π ∈

∆[V , V̄ ], (w,m, V P , V F , V C) ∈ [w, w̄]×[0,∞)×[V , V̄ ]3 satisfy the following HJB-type equation

(ref Sanniknov), where (π,m) is the randomization of contract over (V C , V P ), and (V S, V F ) is

the promised value contingent on the realization of production shock.

J(V, µ, η) = max
π

EπJ̃(V
C , µ, η) s.t Eπ[V

C ] = V (13)

J̃(V C , µ, η) = max
w,m,V P ,V S ,V F

[
(λα(µ)y − w) +m(J(V P , µ, η)− J(V C , µ, η))

+λ

(
α(µ)J(V S, µS, ηS) + (1− α(µ))J(V F , µF , ηF )− J(V C , µ, η)

)
−(δ + sepF (V

C , η))J(V C , µ, η) +AoJ(V C , µ, η)

]

where Ao is the operator defined by

AoW (t) = lim
h↓0

E[W (t+ h)−W (t)|No production shock during (0,h]]
h

(14)

for a stochastic process W (t). The operator Ao calculates the expected growth of a stochastic

process along the path without production shocks. When randomization is ignored, the stochastic

process is deterministic conditional on the event that no production shock occurs.

From now on, we will assume that J(V, µ, η) is sufficiently smooth with respect to V . In other

words, for a given (V, µ, η), it is twice-differentiable with respect to V , and it has a continuous

second-derivative with respect to V .

Given the definition, AoJ(V, µ, η) is given by

AoJ(V, µ, η) = JV (V, µ, η)AoV (15)

AoV =
(
rV −

[
u(w) + λ(V̄ − V ) + δ(U(η)− V ) +m(V P − V ) + seR(V, η)

])
(16)
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provided that the firm value J is differentiable with respect to V . In the equation, (µS, ηS), (µF , ηF )

are updated beliefs after a production opportunity, δ is the exogenous separation rate, se is the

exogenous search rate for the employed worker, and U(η) is the value of unemployed.

The value of unemployed U(η) is the solution of the implicit equation (17).

rU(η) = u(b) + suR(U(η), η) (17)

where su is the exogenous search rate for the unemployed. There is no AU(η) term in Equation

(17) since η remains constant while unemployed.

Regarding the firm value function, there are several properties that are useful for future argu-

ments.

Lemma 2.1. The firm value function J(V, µ, η) is continuous, weakly decreasing and weakly con-

cave in V for all (µ, η).

Lemma 2.2. If π is a solution of (13), then JV (V, µ, η) = JV (V
C , µ, η) for all V C that π(V C) > 0.

Lemma 2.1 holds because the contract space is convex. The firm can offer a randomized

contract between any two contracts in the beginning. It guarantees that the value function is weakly

concave in V . Because J(V, µ, η) is weakly concave, any V C in the domain of randomization must

satisfy JV (V, µ, η) = JV (V
C , µ, η), otherwise it cannot satisfy both V = Eπ[V

C ] and J(V, µ, η) =

Eπ[J(V
C , µ, η)].

To understand the contract problem intuitively, we present a discrete approximation of the

model. At each point in time, the firm chooses the current wage w and the evolution of the promised

value tomorrow. Because the firm fully controls the promised value process, the firm chooses the

promised value contingent on the shock realizations: the promised value when the production

opportunity arrives and succeeds V S , the promised value when production opportunity arrives and

fails V F , and the promised value when production opportunity does not arrive V C . The public

randomization implies that the firm chooses a distribution π on (w, V S, V F , V C). In short, the
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value function satisfies the maximization problem (18) subject to the promise-keeping constraint

(19)

J(V, µ, η) = max
π

Eπ

[
(λα(µ)y − w)∆ + (18)

1

1 + r∆

(
λ∆J̄(V S, V F , µ, η) +Q(V C , η)J(V C , µ, η)

) ]
where J̄(V S, V F , µ, η) = α(µ)J(V S, µS, ηS) + (1− α(µ))J(V F , µF , ηF )

Q(V C , η) = 1− (λ+ δ + sepF (V
C , η))∆

subject to

V = Eπ

[
u(w)∆ +

1

1 + r∆

(
λ∆V̄ + δ∆U(η) + sepF (V

C , η)∆F (V C , η) +Q(V C , η)V C
)]

(19)

where V̄ = α(µ)V S + (1− α(µ))V F

Intuitive interpretation of the maximization problem is the following. In a short period of

time ∆, three types of shocks can occur: the production opportunity arrival with probability

λ∆, exogenous separation with probability δ∆, and endogenous separation through a job-to-

job transition with probability sepF (V
C , η)∆. Upon the arrival of the two separation shocks,

the match is destroyed and the firm value becomes 0. When the production opportunity ar-

rives, the match produces expected output α(µ)y, and the expected firm value after ∆ becomes

J̄(V S, V F , µ, η), which is the average between J(V S, µS, ηS) and J(V F , µF , ηF ). With prob-

ability Q(V C , η), no shock occurs and the firm value after this event is J(V C , µ, η). Taking

into accounts these possibilities, the firm chooses a distribution π over (w, V S, V F , V C) to max-

imize the firm value. The probability distribution π must deliver the expected lifetime value V

to the worker, which is the sum of flow utility u(w)∆ and the discounted expected future value

(λ∆V̄ +δ∆U(η)+sepF (V
C , η)∆F (V C , η)+Q(V C , η)V C)/(1+r∆). Note that the effects of the

belief changes are already incorporated into V S and V F . In the appendix, we show that Equation

(18) and equation (19) converge to the HJB-type equation (13) as ∆ → 0.
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2.8 Market tightness

Firms post a vacancy with a flow cost k > 0. Denote the firm value immediately after matching

with a worker by J0(V, η), which satisfies

J0(V, η) ≡ J(V, ηρ+ (1− η)(1− ρ), η) (20)

Another interpretation of J0(V, η) is the value of an employed worker to outside firms when outside

firms match the current contract value V . The free entry condition requires that the market tightness

satisfies (21)

q(θ(V, η))J0(V, η) = k (21)

if q̄J0(V, η) ≥ k, and θ(V, η) = 0 otherwise. Note that firms have a higher initial belief about

match quality µ0 = ηρ + (1 − η)(1 − ρ) in a market with higher η. Given that the increase in the

expected output is the first-order effect, J0(V, η) is increasing in η.3 It means that the market for a

higher η is tighter, so workers with a higher η find a job more easily conditional on V .

3 Equilibrium

Definition 3.0.1. An equilibrium consists of the firm value function J(V, µ, η), the optimal

policy π(V, µ, η), the market tightness θ(V, η), the optimal search policy and return to search

F (V, η), R(V, η), and the value of unemployed U(η) such that

1. The firm value function J(V, µ, η) is the solution of (11) subject to (12), and the op-

timal policy π(V, µ, η) solves the (13) together with the value function J(V, µ, η) given

F (V, η), R(V, η), U(η) and the evolution of beliefs (2) and (7).
3In equilibrium, there are several effects of η on J beyond its effects on µ0. First, workers with different η find

the next job at different rates. Second, the wage stream required to deliver V differs by η since the return to search is
different. Given that J0(V, η) is increasing in η, then the first effect makes this relationship weaker while the second
effect makes this relationship stronger. We numerically confirm that not only J0, but also J are increasing in η.
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2. Workers’ search decisions and return to search F (V, η) and R(V, η) are consistent with the

equilibrium tightness θ(V, η).

3. θ(V, η) satisfies the free entry condition (21) given J(V, µ, η).

4. The value of unemployed U(η) satisfies (17) given R(V, η).

The equilibrium definition is self-explanatory. The equilibrium in this paper is Block-recursive

in the sense that the value function and policy functions are independent of aggregate distributions

(Shi, 2009; Menzio and Shi, 2011). It is because workers’ search is directed by the wage contract.

It reduces computational burdens when we calculate the optimal contract, and more substantially

when we simulate our model.

4 Characterization of the optimal wage contract

In this subsection, we will derive qualitative features of the optimal contract.

4.1 Continuous wage-path

Recall the firm’s problem Equation (13). By substituting J̃(V, µ, η), one can get the following.

rJ(V, µ, η) = max
π

Eπ

[
(λα(µ)y − w) +m(J(V P , µ, η)− J(V C , µ, η))

+λ

(
α(µ)J(V S, µS, ηS) + (1− α(µ))J(V F , µF , ηF )− J(V C , µ, η)

)
−(δ + sepF (V

C , η))J(V C , µ, η) + JV (V
C , µ, η)AoV C

]
subject to J(V, µ, η) = Eπ[J(V

C , µ, η)], V = Eπ[V
C ]

where the choice variable is a probability distribution π over (w,m, V C , V P , V S, V F , V C). From

Lemma 2.2, JV (V C , µ, η) = JV (V, µ, η), which means that the firm does not randomize over
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(w, V S, V F ) because the following terms are (weakly) concave with respect to each control.

w : −w − JV (V, µ, η)u(w) (22)

V S : λα(µ)(J(V S, µS, ηS)− JV (V, µ, η) · V S) (23)

V F : λ(1− α(µ))(J(V F , µF , ηF )− JV (V, µ, η) · V F ) (24)

Therefore, the randomization is only required for values without production shocks.

Given this formulation, the first order conditions are as the following:

∂w : −1− JV (V, µ, η)u
′(w) = 0 (25)

∂V : JV (V
S, µS, ηS) = JV (V

F , µF , ηF ) = JV (V
P , µ, η) = JV (V

C , µ, η) = JV (V, µ, η)(26)

∂m ; JV (V
P , µ, η) = JV (V

C , µ, η) = JV (V, µ, η) (27)

The first order condition with respect to w shows that the optimal wage contract should optimally

split the revenue as in previous literature (Burdett and Coles, 2003; Shi, 2009). At the optimal

wage, the marginal benefit of reducing wage today must be equal to the marginal cost of doing so,

which comes from a higher promised value in the future. By reducing wage marginally, the firm

must promise a higher value instantaneously after by u′(w) of which marginal cost is JV (V, µ, η).

Thus, |JV · u′| = 1 at the optimal contract. The first order conditions with respect to V S and V F

show that JV is equalized before and after the production shock. Otherwise, the firm can adjust

how the value is delivered to the worker so that increase J while fixing the lifetime value of the

worker.

Since u′(w) is a function of JV , the optimal wage is equalized before and after the produc-

tion shock, regardless of whether it succeeds or not. When there is no production shock, the

promised value V evolves according to the optimal π, which is either a degenerate or a two-point

lottery. From Lemma 2.2 and first-order condition, JV (V C , µ, η) and JV (V
P , µ, η) are equal to

JV (V, µ, η), meaning that the optimal wage does not vary by the randomization. Combining all
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these results, the realized wage-path is continuous with respect to tenure.

Proposition 4.1.1. The optimal wage-path is continuous in tenure.

The continuous wage-path is known from previous literature when there is no uncertainty (Bur-

dett and Coles, 2003; Shi, 2009). It is also a natural consequence if the belief and the worker value

V continuously evolve. In this paper, however, the beliefs are jump processes. Still, the firm ad-

justs the promised value so that the optimal wage-path is continuous in tenure. The intuition behind

Proposition 4.1.1 is similar to the previous literature. Since promising a discontinuous wage-path

is expensive for firms due to risk-aversion, firms provide a continuous wage-path for every possi-

ble state realizations. It does not mean that firms do not compensate for a positive shock. Firms

compensate for a positive shock not by immediate wage promotion but by future wage growth.

4.2 Wage and value growth

For a given V , the optimal contract may require mixing between two values V1 < V < V2 with a

strictly positive probability π. Because π realization is immediate, the worker’s promised value can

never stay at such V . At the end point of mixing, such as V1 and V2, the firm does not randomize

through π, but may use the promotion rate m to randomize the contract.

Consider V such that JV V (V
′, µ, η) < 0 for all V ′ in a neighborhood of V . At (V, µ, η),

the optimal contract does not involve mixing, therefore, along the optimal path, one can get the

following,4

JV V (V, µ, η)AoV =
u′′(w)

u′(w)2
Aow (28)

Note that there is no uncertainty in the optimal wage growth because the optimal wage at t does

not depend on the shock realizations at t, therefore, dw/dt = Aow. Equation (28) shows that AoV

and the wage growth rate must have the same sign if JV V < 0.

4Since J is a concave function of V , J is almost everywhere twice-differentiable with respect to V .
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By taking derivative of (13) with respect to V ,

JV V (V, µ, η)AoV = se
∂pF (V, η)

∂V
J(V, µ, η) (29)

Therefore, the following relationships about the wage growth and firm value holds:

u′′(w)

u′(w)2
dw

dt
= se

∂pF (V, η)

∂V
J(V, µ, η) (30)

Note that ∂pF (V,η)
∂V

≤ 0, and strictly less than 0 if pF (V, η) > 0, or equivalently J0(V, η) > k/q̄. It

describes how the optimal wage evolves over tenure when production shocks do not occur.

Proposition 4.2.1. Let (V, µ, η) be given. Suppose JV V < 0 in a small neighborhood of V . The

optimal wage growth rate is positive if J0(V, η) > k/q̄ and J(V, µ, η) > 0. The optimal wage

growth rate is negative if J0(V, η) > k/q̄ and J(V, µ, η) < 0. The optimal wage growth rate is

zero if J0(V, η) ≤ k/q̄.

Proposition 4.2.1 intuitively extends the result in the previous literature without uncertainty

(Burdett and Coles, 2003; Shi, 2009). When there is no uncertainty, firms provide an increasing

wage profile to retain the worker longer in a match. In this model, the same retention incentive

appears when the worker is valuable for both the current and outside firms.

This retention incentive works in the opposite direction if the worker is valuable for outside

firms, that is J0(V, η) > k/q̄, but not for the current firm, that is J(V, µ, η) < 0. In this case, the

current firm has an incentive to destroy the match, which is infeasible. Instead, the firm provides a

decreasing wage profile which encourages the worker’s on-the-job search. This wage cuts cannot

occur if match quality uncertainty is absent because all firms have an identical value for a worker.

Note that the firm can control the duration of a match through the worker’s on-the-job search

decision. Therefore, if the worker cannot search on-the-job because the current promised value is

already too high, that is J0(V, η) ≤ k/q̄, the wage profile does not affect the expected duration of

the match. Then, the only consideration is the consumption smoothing motive so that the wage is
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flat over tenure.

Proposition 4.2.1 provides predictions about wage cuts. To be specific, there is a lower bound

η such that if the initial belief η0 starts from below η, the optimal wage never declines over tenure

in any possible history realization within the match. In general, Proposition 4.2.1 suggests that

wage cuts are more likely to occur for workers with a successful career (high η) who performed

badly in the current match (low µ). There are three intuitive reasons: first, workers with higher η

have better outside opportunities so that their search decisions respond to wages more elastically.

Second, these workers are on average highly paid (high V ), so that J(V, µ, η) can become negative

easily once µ falls. Third, when η0 is high, η does not vary much with respect to µ. We confirm

that it is the case using the simulation.

Proposition 4.2.1 also shows why wage cuts are rare although they exist in the optimal contract.

Because outside firms need to pay vacancy costs, wage cuts can occur only if the gap between the

value of a worker to the current and outside firms is sufficiently large: J0(V, η) > k/q̄ > 0 >

J(V, µ, η). The condition is more difficult to be satisfied when k/q̄ is large, which suggests that

the wage cuts are less prevalent in a labor market with larger frictions.

Lastly, the model suggests that the optimal contract may exhibit a period of flat wage followed

by a steeper wage growth. It occurs when the optimal contract requires a randomization, or equiv-

alently, JV V = 0 at the current promised value. When the optimal contract randomizes over V1

and V2, and the current value is V1, then the value jumps to V2 at a rate of AoV1

V2−V1
while remains at

V1 otherwise.5 Therefore, occasional promotions with a flat wage in between, commonly observed

in reality, can appear in the optimal contract.

5 Calibration

For numerical analysis, we use the following functional forms:

u(c) = log(c), p(θ) =
θ

1 + θ
(31)

5This is because the expected value must increase by AoV1 without shocks.
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We calibrate the model in a monthly base. We set the discount rate r = 0.0052, which reflect 5%

annual discount rate and average labor market duration of 30 years. The exogenous separation rate

δ is set to 0.015.

We normalize both the production amount y and the expected output per unit time when a

worker newly enters λα(0.5) to one. Then, we assume αG − αB = 10%, which generates about

20% productivity difference between the good and bad match. These assumptions imply that

λ = 2, αG = 0.55, αB = 0.45. Given the average productivity is normalized to one, we assume

the home production b is 0.4 and the vacancy cost k is 0.3. The search rate of the unemployed su

and the employed se are assumed to be 0.5 and 0.45, which generate reasonable unemployment

and E–E transition rates.

There is few direct estimate for ρ, which governs the correlation between the worker’s type and

match quality. Thus, we use two values ρ = 3/4 representing worker heterogeneity, and ρ = 1/2

representing homogeneous worker. We denote the economy with ρ = 3/4 as the benchmark,

and ρ = 1/2 as a counterfactual economy where workers are homogeneous. The following table

summarizes the choice of parameters.

Parameter Meaning Value
r Discount rate 0.0052
δ Separation rate 0.015
b Home production 0.4
y Output 1
λ Production opportunity rate 2
αG Good match production probability 0.55
αB Bad match production probability 0.45
ρ P(Good match | High ability) 3/4, 1/2
su Search rate for the unemployed 0.5
se Search rate for the employed 0.45
k Vacancy cost 0.3

Table 1: Parameter values

Using the parameters above, we simulate the economy consists of 10,000 workers for 50 years.

Table 2 reports some key macro moments from the simulation. The unemployment rate and E–E
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transition rates are relatively close to the data counterpart in both the benchmark and counterfactual

economies. The model generates a significant wage dispersion in terms of Mean-min ratio through

the learning and on-the-job search, but the dispersion is much higher when workers are heteroge-

neous. In both economies, the median is shorter than the average tenure, indicating that the tenure

distribution is right-skewed. The difference between the mean and median tenure is much larger in

the benchmark economy.

Statistics Benchmark (ρ = 3/4) Counterfactual (ρ = 1/2)
Average wage 1.0470 1.0672
Standard deviation of wage 0.1753 0.1167
Mean-min ratio 1.8514 1.4275
Unemployment rate 0.0622 0.0619
Average match quality (µ) 0.5407 0.5348
Median tenure (year) 2.1875 2.2500
Average tenure (year) 6.4708 3.3606
E–E transition rate 1.29% 1.56%

Table 2: Moments from the simulation

5.1 Numerical results

5.1.1 Optimal wage

We first examine the optimal wage policy as a function of (V, µ, η). For the promised value, it

is straightforward that the optimal wage is increasing in the promised value (Figure 2(a)). As a

function of beliefs, the optimal wage is decreasing in both µ and η. It is decreasing in µ because

the firm has a higher incentive to retain the worker when µ is higher. The firm can retain the

worker longer by promising a higher value tomorrow, which leads to a lower current wage given

the current promised value (Balke and Lamadon, 2020; Fawcett, 2021).

The optimal wage is also a decreasing function of η. There are two opposite effects of η on

wage. On the one hand, a higher η raises the job-finding probability of the worker. Because the

job-finding probability is concave in the search value, it tends to increase the optimal wage. On the
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Figure 2: Optimal wage policy

other hand, a higher η increases the value of search. It means that the firm can compensate less to

deliver the same promised value. The numerical calculation shows that the latter effect dominates

the former one.

Note that Figure 2(d) does not mean that good workers are paid less because good workers

have on average higher promised values. There are two reasons. First, the promised value in-

creases when η increases within a match. Second, a higher η worker searches for a higher V . The

relationship between the ability and wage are results of all these effects in equilibrium. Especially,

it crucially depends on the wage and value distribution. As expected, a strong positive relationship

between η and w exists in equilibrium.
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5.1.2 Worker’s search decision
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Figure 3: The employed worker’s search decisions
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Figure 4: The unemployed worker’s search decision
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Figure 3(a) and 3(b) illustrate the employed worker’s optimal search decision as a function of

η. The figures show that better workers search for a better job, and they move to the next job at a

faster rate when the promised value is the same. Note that these two figures are drawn given V ,

therefore, it does not mean that better workers leave a job faster in equilibrium.

Figure 4(a) illustrates the value of the unemployed U(η). The value of unemployed is increas-

ing and slightly convex in η, meaning that the unemployed workers are better off by uncertainty

resolution. It is an additional incentive to search for a job. Because the value of unemployed is

increasing in η, the job-finding probability of the unemployed is not monotone. This is because

a higher current value pushes up the search target, which reduces the job-finding probability. It

means that the uncertain worker quality is not a sufficient condition for the negative duration effect

(Doppelt, 2016).

5.1.3 Firm value function

Figure 5 illustrates the firm value function J(V, µ, η). The firm value is increasing in both µ and

η. Intuitively, the firm value is increasing in µ because it directly increases the expected output

(Figure 5(c)). While its direction of change is always the same, the convexity differs by the level

of V . When V is low so that the worker can search for a job, the firm value is convex in µ. This

is because the firm can adjust the effective discount rate through the optimal wage contract, so

that the benefit exceeds the linear portion that comes from the increased output. When the worker

cannot search because V is too high, the firm value is linear in µ because the only effect is through

expected output. In this region of V , the optimal wage is also flat with respect to µ.

Figure 5(d) shows that the firm value is also increasing in η. As mentioned earlier, there are two

opposite effects of η on the firm value: the higher job separation rate and lower total compensation.

Figure 5(d) shows that the latter exceeds the former effect so that the firm value is increasing in η.

Similarly to µ case, the shape differs by the promised value V . When V is high so that the worker

cannot search, the marginal benefit of an increase in η is proportional to 1
r+δ

dU(η)
dη

. Thus, the firm

value function and U(η) have a similar shape. When the worker can search for a job, the firm
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Figure 5: Firm value function J(V, µ, η)

value change is a composite of two effects, search rate and compensation. It leads to a concave

relationship between the firm value and η.

5.2 Simulated Economy

Table 2 summarizes important moments of the simulated economy. The unemployment rate and

E–E transition rate are within a reasonable range. The median tenure of the employed is also close

to the U.S data counterpart, which is close to 4 years. The model generates relative high wage

dispersion in terms of mean-min ratio. Both uncertainty and on-the-job search contribute to the

higher wage dispersion.
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Figure 6: Effects of tenure and experience
The solid line is the kernel estimation, and dotted lines are 95% confidence intervals calculated by

bootstrapping.

The model successfully generates well-known empirical regularities regarding tenure effects,

such as declining job-to-job transition rate (Figure 6(a)) and increasing wage (Figure 6(b)). The

model also generates life-cycle features although we do not introduce finitely lived agents, such as

declining job-to-job transition rate over experience (Figure 6(c)), and concave wage profile (Figure

6(d)). It suggests that the resolution of uncertainty about ability plays an important role in shaping

life-cycle patterns of wage and job transitions.
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(b) Job-to-job separation rate over η

Figure 7: Worker ability and average wage, job-to-job transition
The solid line is the kernel estimation, and dotted lines are 95% confidence intervals calculated by

bootstrapping.

5.2.1 Do better workers stay longer?

Figure 7 illustrates the kernel estimation of the average wage and job-to-job transition rate as a

function of η at a specific point in time of the simulated economy. Figure 7(a) illustrates that

better workers are on average paid well in equilibrium. Recall that the optimal wage policy itself

is decreasing in η given V . Thus, Figure 7(a) implies that the positive association between η and

V dominates the negative policy effect.

Figure 7(b) shows that better workers stay longer at a job. Two opposite forces indicate that the

direction between job-to-job transition rate and worker ability can go either way. On the one hand,

better workers have better outside opportunities (Figure 3(b)). On the other hand, better workers are

paid better on average (Figure 7(a)). Figure 7(b) shows that the latter force dominates the former

force. For this result, the optimal wage contract plays a crucial role. For instance, the relationship

between worker ability and job-to-job transition becomes negative if wage contracts are restricted

to a fixed-wage contract. It highlights the importance of endogenous payment schemes in shaping

workers’ transition dynamics.

Figure 7(b) explains why the previous number of job-to-job transitions is negatively correlated

with the current wage (Light and McGarry, 1998; Carrillo-Tudela and Kaas, 2015). Figure 8
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illustrates the average V and η over the number of job-to-job transitions. We count the previous

job-to-job transitions uninterrupted by an unemployment spell. Standard on-the-job search models

without uncertainty predict a positive relationship between V and job-to-job transitions regardless

of contractual environments and search methods (Burdett and Mortensen, 1998; Burdett and Coles,

2003; Delacroix and Shi, 2006; Shi, 2009). When uncertainty presents and wages endogenously

respond, the past job-to-job transitions is associated with lower value (Figure 8(a)) and ability

(Figure 8(b)).
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Figure 8: Previous job-to-job transitions, value, and ability
The solid line is the kernel estimation, and dotted lines are 95% confidence intervals calculated by

bootstrapping.

The lower value and ability do not imply the lower wage because the optimal wage policy is

decreasing in η. In the simulation, the number of job-to-job transitions and wage are negatively

associated while the relationship is weaker than that of V or η (Figure ??).

To further examine the relationship between the number of job-to-job transitions and wage, I

run a wage regression using the simulated data. The first column shows that the number of job-to-

job transitions is negatively correlated with the current wage after controlling for tenure and labor

market experience. This negative correlation comes from the worker’s unobserved ability. Once η

is controlled in the second column, the relationship becomes a positive. (Carrillo-Tudela and Kaas,

2015).
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wage wage
N. of Job-to-job −0.0025∗(0.0012) 0.0125∗∗∗(0.0012)
η 0.1582∗∗∗(0.0060)
Tenure 0.0429∗∗∗(0.0006) 0.0395∗∗∗(0.0006)
Tenure*Tenure −0.0007∗∗∗(0.0000) −0.0007∗∗∗(0.0000)
Exp 0.0030∗∗∗(0.0005) 0.0034∗∗∗(0.0004)
Exp*Exp −0.0000∗∗∗(0.0000) 0.0001∗∗∗(0.0000)
Constant 0.8282∗∗∗(0.0047) 0.7463∗∗∗(0.0053)
N 4743 4743
R2 0.7151 0.7520

Table 3: Wage regression using simulated data
Note: Numbers in parentheses are standard deviations. ∗ < 0.05, ∗∗ < 0.01, ∗∗∗ < 0.001.

5.2.2 Incidence of wage cut

Contrary to the model without uncertainty, this model allows a possibility of wage cut of job

stayers. In the simulated data, the fraction of stayers whose wage falls at a point in time is 19.76%.

We view that this magnitude is reasonable considering the data because Elsby et al. (2016) finds

that the fraction is around 10% – 20% using CPS data. It is a bit smaller than Park and Shin (2017)

reports from Korean data which is in range of 20% – 30%.

Note that the incidence of wage cut varies much by how one defines wage cut. For instance, if

it is defined as a reduction of baseline wages, then the fraction of wage cut becomes much smaller,

which is about 2% (Grigsby et al., 2021). Still, they report that 35% of workers experience the

baseline wage unchanged, implying the real wage reduction.

1(wage cut)
µ −8.3193∗∗∗(0.3377)
η 3.9784∗∗∗(0.2846)
wage 3.3892∗∗∗(0.5106)
Tenure −0.1878∗∗(0.0647)
Tenure*Tenure −0.0078(0.0049)
Exp 0.0234(0.0132)
Exp*Exp −0.0005∗∗∗(0.0003)
Constant −1.4682∗∗∗(0.3587)
N 4743

Table 4: Regression on the incidence of wage cut
Note: Numbers in parentheses are standard deviations. ∗ < 0.05, ∗∗ < 0.01, ∗∗∗ < 0.001.
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To examine the characteristics of workers who experience wage cut, we run a logit regression

on the incidence of wage cut using the simulated data. The dependent variable is the dummy vari-

able which takes value one if the worker’s wage growth rate is negative, and explanatory variables

are wage, tenure, experience, and beliefs. The results (Table 4) show that better workers (higher

η) who are highly paid, but perform poorly in the current position (lower µ) are likely to expe-

rience wage cut. This is intuitive because the wage cut occurs when the worker has an outside

opportunity, but the firm does not want to keep the worker.

How is this model result related to the empirical finding? While there are not many studies

that systematically analyze the characteristics of workers who experience wage cut, Park and Shin

(2017) documents that many establishments cut wages of a subset of workers, instead of a few

establishment cut wages of all workers. It highlights an importance of match quality in the inci-

dence of wage cut, which is consistent with this model. Also, Park and Shin (2017) documents

that within an establishment, highly paid workers are more likely to experience wage cut, which is

also consistent with the model prediction.

Note that the necessary condition behind the wage reduction is the presence of match quality

uncertainty. The effect of worker ability uncertainty is a bit subtle. Even if workers are homo-

geneous, the wage cut can occur because the inside and outside values can differ, although the

incidence of wage cut falls to 11% in this case. It does not mean the incidence of wage cut is

increasing in ρ. In the extreme case when ρ = 1, there is no difference between the inside and

outside values because µ = η always, meaning that no wage reduction occurs in equilibrium. It

suggests that the incidence of wage cut is a hump-shaped with respect to ρ.

6 Conclusion

To be added
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A Deriving the continuous-time limit equation

In general, the continuous-time HJB equation can be derived by the limit of the discrete-time model

when ∆ → 0. Following the same logic, recall the finite-time version of optimization problem with

a constant wage choice w over the time period of ∆:

J(V, µ, η) = max
π

Eπ

[
(λα(µ)y − w)∆ + (32)

1

1 + r∆

(
λ∆J̄(V S, V F , µ, η) +Q(V C , η)J(V C , µ, η)

) ]
where J̄(V S, V F , µ, η) = α(µ)J(V S, µS, ηS) + (1− α(µ))J(V F , µF , ηF )

Q(V C , η) = 1− (λ+ δ + sepF (V
C , η))∆

subject to

V = Eπ

[
u(w)∆ +

1

1 + r∆

(
λ∆V̄ + δ∆U(η) + sepF (V

C , η)∆F (V C , η) +Q(V C , η)V C
)]

(33)

where V̄ = α(µ)V S + (1− α(µ))V F

Dividing both sides of (32) by ∆, we get

rJ(V ) = max
π

Eπ

[
(λα(µ)y − w) + λ(J(V C)− J̄)− (δ + sepF (V

C))J(V C) +
J(V C)− J(V )

∆

]
(34)

where I omit the dependence of J on (µ, η).

Let’s denote the solutions to the above problem as π := π(∆), w := w(∆), V S := V S(∆),

and V F := V F (∆) for each given ∆ > 0. Since the set of admissible (w, V S, V F , V C)

is compact in the Euclidean space, we know that the space of admissible π over the com-

pact set of admissible (w, V S, V F , V C) is pre-compact. Therefore, we could pick a conver-

gent sub-sequence from the tight family of solutions {π(∆)}∆>0 with corresponding quadruples

{(w(∆), V S(∆), V F (∆), V C(∆))}∆>0. From now on, we will say that the limit of the convergent

sub-sequence when ∆ → 0 as the limits of solutions. For the simplicity, let’s denote the limits of

these solutions as π, w, V S , V F , and V C , respectively, as ∆ → 0. We know that this is same as
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the solution π∗ to the (13), that is, w = w∗.

The main difficulty of getting ∆ → 0 limit is that J(V C(∆))−J(V )
∆

may not have a well-defined

limit. As ∆ → 0, Eπ(∆)[V
C(∆)] → V from (33), but it does not guarantee V C ≈ V for every

realization of V C . Indeed, V C(∆) does not converge to V point-wise as ∆ → 0 when the firm

randomizes over V C . In this appendix, we will prove that the continuous-time limit equation is

well-defined even though the firm randomizes over V C .

Define ϵ(∆) as the difference between J evaluated at Eπ(∆)[V
C(∆)] and expected value of J

over π(∆).

ϵ(∆) = J(Eπ(∆)[V
C(∆)])− Eπ(∆)[J(V

C(∆))] (35)

We will show that ϵ(∆)/∆ → 0 when π(∆) converges to a degenerate π, thus one can exchange

the order of J and E when calculating the limit of Eπ(∆)

[
J(V C(∆))−J(V )

∆

]
. By definition of ϵ(∆),

(
1

∆
− λ− δ

)
ϵ(∆) ≤ sepF (Eπ(∆)[V

C(∆)])J(Eπ(∆)[V
C(∆)])− Eπ(∆)[sepF (V

C(∆))J(V C(∆))](36)

Suppose the marginal distribution of V C of π is degenerate at V . Then, the limit of RHS of

Equation (36) is 0 because pF and J are continuous. Moreover, ϵ(∆) ≥ 0 because J is weakly

concave in V , therefore ϵ(∆)/∆ → 0 as ∆ → 0. It means that

lim
∆→0

Eπ(∆)[J(V
C(∆))]− J(V )

∆
= lim

∆→0

J(Eπ(∆)[V
C(∆)])− J(V )

∆
= JV (V )AV (37)

Consider the other case when π∗ puts a positive measure on more than one element. We will

first show that it is enough to consider that π(∆) converges to a two-point lottery. To show that it
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is the case, let’s define an interim value function J̃(V, µ, η) by the following.

J̃(V, µ, η) = max
w,V C ,V F ,V S

[
(λα(µ)y − w)∆ +

1

1 + r∆

(
λ∆J̄(V S, V F , µ, η) +Q(V C , η)J(V C , µ, η)

) ]
subject to

V =

[
u(w)∆ +

1

1 + r∆

(
λ∆V̄ + δ∆U(η) + sepF (V

C , η)∆F (V C , η) +Q(V C , η)V C
)]

(38)

The difference from J and J̃ is that J allows to choose a general distribution over (w, V C , V F , V S),

while J̃ only allow a degenerate distribution. By definition,

J(V, µ, η) = max
π̃

J̃(V, µ, η) (39)

where π̃ is a distribution over V . Intuitively, π can be decomposed into two-step: first, randomize

over V , and then choose (w, V C , V F , V S) accordingly. Given this definition, J̃ is weakly decreas-

ing in V . Therefore, the maximum of Equation (39) can be achieved by either a degenerate or

two-point lottery π̃. Because each π̃ implies π in the original problem, it is loss of generality to

assume that π∗ puts a positive measure on at most two V C .

Denote these two points by Vi for i = 1, 2. Consider the optimal contract problem represented

by (18) and (19) corresponding to determine J(Vi) for given ∆ and i = 1, 2. Denote the optimal

solution by πi(∆). Then, the limit of πi(∆) must have a degenerate distribution over V C(∆). If

not, J(Vi) > J̃(Vi) holds at the limit of ∆ → 0, meaning that J(V ) can be increased by mixing

V−i and πi(∆), instead of using π̃(∆). Because πi(∆) ◦ π̃(∆) attains the maximum,

lim
∆→0

Eπ(∆)[J(V
C
i (∆))]− J(Vi)

∆
= lim

∆→0
Eπ̃(∆)

(
Eπi(∆)[J(V

C
i (∆))]− J(Vi)

∆

)
(40)

= lim
∆→0

Eπ̃(∆)

J(Eπi(∆)[V
C
i (∆)])− J(Vi)

∆
(41)

= Eπ∗
(
JV (V

C)AV C
)

(42)

Note that
J(Eπi(∆)[V

C
i (∆)])−J(Vi)

∆
converges to JV (Vi)AVi as πi(∆) converges to a degenerate distri-
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bution. Also, π̃(∆) converges to the marginal distribution of V C of π∗ because the promise-keeping

constraint converges to V = V C . Therefore, the third equality holds.

It shows that the limit of Equation (34) is the following.

rJ(V ) = Eπ∗

[
(λα(µ)y − w) + λ(J(V C)− J̄)− (δ + sepF (V

C))J(V C) + JV (V
C)AV C

]
(43)

Note that π∗ satisfies Eπ∗ [V C ] = V and Eπ∗ [J(V C)] = J(V ). Therefore,

rJ(V ) ≤ max
π

Eπ

[
(λα(µ)y − w) + λ(J(V C)− J̄)− (δ + sepF (V

C))J(V C) + JV (V
C)AV C

]
subject to J(V ) = Eπ[J(V

C)], V = Eπ[V
C ]

On the other hand,

rJ(V ) ≥ Eπ

[
(λα(µ)y − w) + λ(J(V C(∆))− J̄)− (δ + sepF (V

C(∆)))J(V C(∆)) +
J(V C(∆))− J(V )

∆

]
(44)

for any π,∆ that satisfies the promise-keeping constraint. Given that π satisfies the promise-

keeping constraint, the upper bound of the limit of RHS as ∆ → 0 is Eπ

[
(λα(µ)y − w) +

λ(J(V C)− J̄)− (δ + sepF (V
C))J(V C) + JV (V

C)AV C

]
because ϵ(∆) ≥ 0. It means that

rJ(V ) ≥ Eπ

[
(λα(µ)y − w) + λ(J(V C)− J̄)− (δ + sepF (V

C))J(V C) + JV (V
C)AV C

]
(45)

for any π, thus the inequality holds when the maximum is taken over π. It proves Equation (13).

rJ(V, µ, η) = max
π

Eπ

[
(λα(µ)y − w) + λ(J̄(V S, V F , µ, η)− J(V C , µ, η)) (46)

−(δ + sepF (V
C , η))J(V C , µ, η) +AJ(V C , µ, η)

]
subject to J(V, µ, η) = Eπ[J(V

C , µ, η)], V = Eπ[V
C ]
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