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1 Introduction

In many workplaces, a worker’s wage increases as they gain tenure with the firm. A growing

list of studies suggest that this reflects not only general experience but also tenure with a

specific firm. In addition, these studies show that the effect of worker seniority on wages may

be quite large.1 Recent research has focused mostly on firm-specific human capital to explain

tenure effects on the wage profile of workers. However, evidence from studies that relate firm

characteristics to wage profiles suggest that deferred compensation schemes, designed to

motivate worker effort, also play an important role in the determination of seniority wage

structures.2

Building on the pioneering work of Lazear(1979, 1981) and others,3 we model firms as

deferring compensation in order to motivate worker effort; effort is imperfectly observable4

and firms hire workers by offering them implicit long-term contracts. Unlike Lazear(1979,

1981), in which the exact path of wage profiles is indeterminate as long as it provides enough

motivation for workers,5 the model presented here provides a determinate path of wages at

1While results from earlier research on returns from tenure are mixed, (for a detailed discussion, see
Altonji and Shakotko (1987), Abraham and Farber (1987), Hutchens(1989), Topel (1991), Neal (1995), and
Altonji and Williams (2005) among others), recent research shows large tenure effects on wages. See Stevens
(2003), Dustmann and Meghir (2005), Buchinsky et al. (2010), Pavan (2011), Zwick (2011), Kwon and
Milgrom (2014), and Buhai et al. (2014) among others.

2For example, Zwick (2011) finds that firms with steeper seniority wage profiles have lower initial wages
and that the correlation between the initial wage level and the gradient is weakly negative or insignificant.
Daniel and Heywood (2007) find that firms with pensions and steep wage profiles hire fewer older workers.
Their findings support deferred compensation as an important determinant of seniority wage structures.
Other papers that find evidence of deferred compensation include Barth (1997) and Heywood et al. (2010).

3See, for example, Shapiro and Stiglitz (1984), Bulow and Summers (1986), and Akerlof and Katz (1989)
for notable efficiency wage models. Studies such as Krueger and Summers (1988), Cappelli and Chauvin
(1991), Blackburn and Neumark (1992) and somewhat more recently, Kugler (2003) and Huck et al. (2011)
provide empirical evidence for the presence of efficiency wages.

4“Imperfectly observable” could be weakened to ”imperfectly verifiable with constraints on what can be
done without verification.”

5Lazear(1979, 1981) allows for explicit bonding: workers posting upfront bonds to the firm that may later
be confiscated by the firm. This assumption has been criticized on the grounds that it is seldom observed
in the real economy. Akerlof and Katz (1989) argue that when one does not allow explicit bonding, firms
should pay higher-than-market wages. They claim that this dominates deferred payment. However, we find
that when the effort choice of workers is continuous and not binary, upward sloping wage profiles will still
be used by firms to motivate workers.
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every point in time. This is because we allow workers to make a continuous effort choice

at every instant in time instead of the binary (work or shirk) effort decision typical of the

literature.6 In our model, the wage goes up gradually with seniority. However, seniority in

our framework reflects more than just the amount of time employed at the firm: it reflects

the value of a worker’s future utility to the firm. A worker’s future utility is valuable to the

firm because it motivates effort, which raises the worker’s productivity.

We extend this setup to include the interaction of seniority with other aspects of the

firm-worker relationship. First, the seniority wage structure has interesting implications for

earnings losses from job loss. Previous research has generally found large and persistent losses

in wages that are difficult to reconcile with existing theories. Here, we show that seniority

wage structures provide a channel through which a job loss results in large earnings losses for

a worker, as well as higher separation rates from subsequent jobs. Second, we consider the

choices of firms with variable monitoring intensity and give conditions for optimal monitoring

intensity to fall with seniority. Third, we consider the case of firms that provide various

amenities to workers in addition to wages. Additively separable amenities behave much

like wages, but amenities that make effort easier behave in a more complex way. Finally,

we consider on-the-job training; we show that despite firm-specific human capital being

subject to depreciation, optimal training expenditures will make firm-specific human capital

continually rise with seniority.

We aim in this paper to fill an important void in the debate over seniority wages. By

providing a well-defined measure of the importance of seniority and predictions about the

6Dealing with a continuous effort choice is made possible in part by the solution technique we apply to
solve the agents’ problems. The agents in our model solve an optimization problem where the expectations
of other agents are a forward-looking state variable. The structure of this problem makes it difficult to
utilize the usual techniques of dynamic optimization. The “retrograde” solution technique for control theory
problems, which is underappreciated in economics, allows us to reformulate the problem so that standard
optimal control methods can be used. The retrograde approach is also valuable for other situations that
have a forward-looking variable as a state variable, such as in studying monetary policy and studying capital
taxation. We consider the problem we solve a good example for learning the retrograde approach.
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interaction of seniority with other aspects of the firm-worker relationship, our framework

provides important insight into seniority wages and helps show a path toward testing com-

peting theories about firm-worker relationships.7 This paper is purely theoretical; a single

paper that treated both theory and empirics in this area as they should be treated would

be much too long. But we view a theory that makes the evolution of the wage with the

accumulation of seniority determinate as a big step toward empirical implementation of the

theory of deferred compensation.

Understanding the determinants of the empirically increasing tenure-wage relationship is

related to a long-standing question in economics: whether spot wages always track produc-

tivity. In our model, wages do not directly reflect the firm-specific current productivity of

the worker; they reflect the productivity of a worker over the worker’s entire expected tenure

with the firm: past, present and future. Failure of equality between current marginal revenue

product and the wage has important implications for labor economics but also macroeco-

nomics, since it implies that the observed wage may not be the allocative wage.8

In addition to providing insight into seniority wages, this paper can be seen as contributing

to a revival and deepening of the study of efficiency wage models. Although efficiency wage

models once provided much insight into involuntary unemployment (Shapiro and Stiglitz,

1984) and industrial policies (Bulow and Summers, 1986), notable recent research on the

topic is much scarcer. We view the decline in prominence of efficiency wage research as

unfortunate. Efficiency wage models have the potential to provide important new insights

7Different theories of seniority wages—as well as empirical studies designed around these theories—reach
different conclusions about the relationship between productivity and wages. The deferred compensation
view of seniority wages suggests that the wage does not necessarily coincide with productivity at a given
moment and that increases in wages are larger than increases in productivity. Theories of firm-specific
human capital accumulation argue that seniority wages reflect increased productivity of workers. (Recent
efforts in theoretical research that focus on firm-specific human capital accumulation leading to seniority
wage structures include Stevens (2003), Lazear (2009), and Burdett and Coles (2010).)

8Oversimplifying, an “allocative wage” is a wage that determines the quantity of labor demanded and
the quantity of labor supplied. In an efficiency wage model, the observed wage does neither.
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into the sources and consequences of unemployment. The current discourse on unemployment

and its fluctuations is dominated by the search and matching framework; a qualitative and

quantitative exploration into motivational unemployment may enhance our understanding

of unemployment and its fluctuations.

This paper also belongs to a broader literature that studies the implications of variable

worker effort. Research has shown that accounting for variable effort is critical to under-

standing various economic phenomena. Basu and Kimball (1997) and Basu, Fernald and

Kimball (2006) demonstrate that accounting for variable effort is critical in the measure-

ment of technical change. Strobl and Walsh (2007) argue that accounting for the role of

variable effort is central to understanding the relationship between monitoring and wages.

Epstein and Kimball (2014) puts forth a new theory examining worker effort and disutility

of work to study why working hours remains constant in the long-run. Various papers have

also attempted to tease out the factors that determine effort. For example, Zivin and Nei-

dell (2012) study the interaction between worker effort and pollution for agricultural workers

with piece rate contracts. In a controlled setting, Abeler et al. (2011) find that a person’s ex-

pectation about their affects the amount of effort they provide. Dellavigna and Pope (2018)

find that monetary incentives are most effective, behavior and psychological incentives are

somewhat but comparatively less effective in eliciting effort. The focus on asymmetric infor-

mation distinguishes the efficiency wage literature from the rest of the literature on variable

effort. Nevertheless, the theme of variable effort creates a strong bond between the efficiency

wage literature and these other papers.

The paper is organized as follows. In Section 2, we present and solve the worker’s and

the firm’s problems. Section 3 analyzes the optimal contract graphically. Section 4 considers

extensions and additional applications of the framework. Section 5 concludes. (Appendix A

discusses the steady state equilibrium.)
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2 Model

We present a dynamic model in which firms hire workers in a competitive labor market by

offering workers (implicit) long-term contracts. The model is presented in continuous time

and is set in a partial equilibrium framework where interest rates are exogenous, capital is

fixed and output is otherwise a function of effective labor input alone. All workers and firms

are ex-ante identical.

A firm’s implicit contract with the worker specifies a wage path and dismissal policy,

both of which are allowed to depend on macroeconomic conditions. A worker supplies a

fixed number of hours per unit time. However, workers are able to choose how much effort

they exert at every instant in time. This effort level is only partially observable by the firm.

Firms can only observe serious blunders by the worker, the frequency of which depends on

the worker’s effort level.9

Because firms cannot observe effort directly, they motivate effort by punishing blunders

through dismissal. The worker’s effort level z and the firm’s monitoring intensity m jointly

determine the instantaneous probability of dismissal m(1− z). Together with the exogenous

quit rate q this makes up the attrition rate a(m, z) = q + m(1 − z). The expression for

the probability of dismissal m(1 − z) implicitly assumes that the probability of making an

observable blunder is linear in effort.

In theory, there may be alternative methods of punishing workers who make serious mis-

takes. One way to punish workers that has been explored in the literature is to force them to

post a performance bond when they are hired and to confiscate this bond when they make

blunders. However explicit bond posting is seldom observed in actual labor markets. In this

paper, the assumptions we make regarding capital market imperfections prevent explicit

9Alternatively, only serious blunders are verifiable by a third party, and the reputational consequences of
firing a worker for an unverifiable reason are very costly.
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bonding. We assume that workers cannot borrow or lend in financial markets. The inability

to borrow at reasonable rates is plausible in a world in which workers have no collateral, and

the danger of losing their job because of low effort creates moral hazard problems for lenders

worried about bankruptcy. Being unable to save is less realistic, but workers who are highly

impatient will not want to do much saving. As we discuss in Section 2.4, allowing workers

to save would complicate the model, but would not alter the qualitative implications of this

paper, unless it leads to a system with performance bonds.

2.1 The Worker’s Problem

A worker chooses a path of planned effort {zt} to maximize life-time expected discounted

utility. Workers receive utility u(w) from consumption (equal at all times to the wage), disu-

tility v(z) from effort, and an exogenously determined reservation utility ū when unemployed.

Thus, the worker’s flow utility is u(w)− v(z) when employed and ū when unemployed.

For the worker’s utility from wage u(w), we assume u′(w) > 0, u′′(w) < 0, and the

Inada conditions limw→0 u
′(w) = +∞ and limw→∞ u′(w) = 0 on the domain of non-negative

reals. The disutility of effort function v(z) combines elements of worker preferences and the

production function. Effort z is measured as the effectiveness of effort in a particular job

relative to the effectiveness of maximum effort in that job. Therefore if one job requires

more care and attention than another in order to avoid mistakes, this would be expressed as

a high level of disutility necessary to achieve a reasonable level of effectiveness z. In a model

in which worker preferences and the characteristics of jobs vary, the two elements of v(z)

should be analytically separated. However, for the purposes of this paper the distinction

is without consequence. We assume that v′(z) > 0, v′′(z) > 0, v′′′(z) > 0, and also that

limz→1 v(z) = +∞, so that the worker always chooses z < 1.
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Denoting the expected discounted utility of an unemployed worker at time t as Uu(t), the

worker chooses a path of effort {zt} to maximize their expected discounted utility at time

t0. The worker solves

max
{zt}

UE(t0) =

∫ ∞

t0

e
−

∫ t
t0
[ρ+a(m,zt̃)]dt̃[u(wt)− v(zt) + a(m, zt)Uu(t)]dt (1)

where ρ is the time discount factor of the worker. The path of the wage {wt} and the

expected discounted utility of unemployment {Uu(t)} are taken as given. At time t, the

worker receives flow utility u(wt) − v(zt) if the worker remains employed. If the worker is

fired they receive expected discounted utility Uu(t) as the total expected discounted utility

from everything after time t for an unemployed worker. The instantaneous probability of

separation—including being fired—at time t is a(m, zt). (The mnemonic is a for “attrition.”)

Finally, the effective discount factor for flow utility while employed reflects not only the

worker’s utility discount rate ρ but also the probability that the worker remains employed

until time t—which is determined by the integral of the separation rate a(m, z).

Solving the maximization problem in (1) is not trivial, most notably due to the fact that

the control variable z is present in the discount factor e
−

∫ t
t0
(ρ+a(m,zt̃))dt̃. The problem cannot

be solved using the usual optimal control techniques because the control variable affects

the present value of all future flow utilities. However, we show that the problem can be

solved using standard Hamiltonian methods by reformulating the problem—by viewing the

problem as if time were reversed, treating life-time expected discounted utility UE(t) as a

state variable that accumulates backwards in time, and the objective as maximizing this

“retrograde” state variable, life-time expected discounted utility, at time t0. We use the

same technique to solve the firm’s problem as well. We describe this “retrograde approach”

in more detail below.
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2.2 The Retrograde Approach

The definition of the word “retrograde” that we have in mind, as defined by the Merriam-

Webster dictionary, is “moving, occurring, or performed in a backward direction.” The

method we propose treats the endogenous variables as if they were in retrograde motion,

traveling backwards in time. This perspective allows us to reformulate the problem so it

is possible to use standard Hamiltonian methods. Let us demonstrate this method first by

using the worker’s problem, (1).

The first key insight is that UE itself can be thought of as a state variable by reformulating

the problem as

max
{zt}

UE(t0) (2)

s.t. UE(t) =

∫ ∞

t

e−
∫ t′
t [ρ+a(m,z(t̃))]dt̃[u(wt′)− v(zt′) + a(m, zt′)Uu(t

′)]dt′ ∀t ≥ t0,

so that the endogenous discounting is no longer a problem. Here, UE as a forward-looking

state variable in the maximization problem with its law of motion described by an integral

equation. The objective is to maximize the value of UE at the initial point in time t0.

The problem still has a different structure than the usual optimization problems in eco-

nomics. Economists are accustomed to the case of a backward-looking state variable ac-

cumulating over time. (In the paradigmatic case, consumption is the control variable and

capital is the state variable.) To convert the problem in (2) to this familiar form, Leibniz’s

rule can be used to convert a forward-looking integral into a differential equation plus an

end-point constraint (here at +∞, or more precisely at T , as T → +∞ in the limit). By

reversing time in the differential equation, the forward-looking state variable in (2) can be

thought of as accumulating backwards in time. Acting as if time flowed backwards, the
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retrograde state variable UE “accumulates” according to the law of motion:

dUE(t)

−dt
= (u(wt)− v(zt) + a(m, zt)Uu(t))− (ρ+ a(m, zt))UE(t).

Thus, the worker’s problem can be thought of as a standard optimization problem where the

direction of time is reversed, UE(t0) is the objective function, and UE is the retrograde state

variable.

From the retrograde perspective, the worker is trying to maximize expected discounted

utility by choosing effort z, conditional on the retrograde state variable UE. The worker

accumulates this utility stock UE by collecting the instantaneous utility benefit u(wt) −

v(zt) + a(m, zt)Uu(t) over time with UE “depreciating” at rate ρ+ a(m, zt).

The complication that makes the retrograde approach helpful is that the worker’s choice of

effort in the present and near future affects the present value of utilities gained over all future

periods. Thus the worker must always account for how effort choice today will affect the

present value of future expected utility, making effort choice dependent on this value.

While the retrograde perspective offers intuition for the workers problem, the direction

of time flow itself is irrelevant to the solution of an optimal control problem. We can simply

write

max
{zt}

UE(t0)

s.t. U̇E(t) = −
(
(u(wt)− v(zt) + a(m, zt)Uu(t))− (ρ+ a(m, zt))UE(t)

)
and solve the problem using the Hamiltonian equations. The Hamiltonian has the form,

H = −ξ
(
[u(w)− v(z) + a(m, z)Uu]− [ρ+ a(m, z)]UE

)
(3)

where z is the control variable, UE is the retrograde state variable and ξ is the retrograde co-
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state variable. The negative sign gives ξ an interpretation appropriate to the time-reversed

retrograde perspective.10 The objective function does not show up in the Hamiltonian be-

cause the objective function is expressed as a retrograde stock of utility with no flow com-

ponent.

The Hamiltonian equations are textbook (Kamien and Schwartz, 1991). The derivative

of the Hamiltonian with respect to the control variable is set to equal zero (∂H
∂z

= 0), the

derivative with respect to the state variable is set to equal −ξ̇ ( ∂H
∂UE

= −ξ̇), the derivative with

respect to the co-state variable is set to equal U̇E (∂H
∂ξ

= U̇E), and the transversality condition,

which becomes an initial condition from the retrograde perspective, is lim
t→∞

ξtUE(t) = 0. The

only potentially unfamiliar condition from the retrograde perspective is a free “end point”

condition with “salvage value,” ξ(t0) = 1.

Using these equations, the first-order condition for effort z from the worker’s problem

is:

−az(UE − Uu) = v′(z). (4)

In words, a worker exerts effort up to the point where the marginal disutility of effort is

equal to the marginal reduction in the probability of job loss (−az) multiplied by the cost of

job loss, the utility differential UE − Uu.

Denoting the utility differential by ∆ ≡ UE − Uu, equation (4) can be written as

m∆ = v′(z), (5)

since az = −m. Then, by assuming v′(z) is strictly increasing in z (v′′ > 0 is sufficient),

10Nothing substantive would change if the co-state variable were defined with the opposite sign. But it
aids intuition to have most co-state variables be positive.
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equation (5) can be inverted to yield

z = v′−1(m∆). (6)

Thus, effort depends only on the product of monitoring intensity and the cost of job loss. If

m is treated as exogenous, z can be written as a function of the expected discounted utility

differential z = z(∆).

The life-time expected discounted utility of unemployed workers is determined by two

components, the flow utility one receives when unemployed ū and the probability of becoming

employed again with a consequent jump up in expected discounted utility. The expected

discounted utility of an unemployed worker is therefore:

Uu(t) =

∫ ∞

t

e−ρ(t′−t)[ū+
θt′

Nt′ − Lt′
∆0,t′ ]dt

′, (7)

where θ
N−L

is the instantaneous probability of being reemployed, equal to the aggregate rate

of hiring, θ, divided by those in the labor force who are not among the employed, N − L.

The increase in utility from getting a job and becoming employed is the utility differential

∆ for a newly hired worker, denoted ∆0. This can be simplified by defining

ψ ≡ ū+
θ

N − L
∆0 (8)

as the pseudo-utility of being unemployed. This pseudo-utility accounts for the potential

benefit an unemployed worker may gain from being rehired as well as the flow utility when

unemployed, ū. In the model, ψ functions as the reservation utility which a firm must on

average exceed to elicit effort from workers. Note that ψ is exogenous to the firm. A small

firm cannot affect the value of an unemployed worker’s opportunities. The ∆0 that appears

in the pseudo-utility of being unemployed is also outside of a firm’s control because it is
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about other firms hiring workers that have left one’s own firm.

By Leibniz’s rule, the differential equations for expected lifetime utility when currently

employed and unemployed respectively are:

U̇E = (ρ+ a(m, z))UE − a(m, z)Uu − [u(w)− v(z)] (9)

U̇u = ρUu − ψ. (10)

By subtraction,

∆̇ = U̇E − U̇u = (ρ+ a(m, z))∆− [u(w)− v(z)− ψ]. (11)

Together with the transversality condition, this implies:

∆t =

∫ ∞

t

e−
∫ t′
t [ρ+a(m,zt̃)]dt̃[u(wt′)− v(z(∆t′))− ψt′ ]dt

′. (12)

From this expression, one can see that u(w)− v(z)−ψ is the worker’s instantaneous sur-

plus from employment. This surplus utility must be discounted by the attrition rate a(m, z)

as well as by the impatience parameter ρ since with instantaneous probability a(m, z) the

worker becomes unemployed again and worker surplus drops to zero.

2.3 The Firm’s Problem

A firm hires many workers and produces according to the production function

ptf(Zt),
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where pt is the technological component of productivity times a demand shifter, Zt is the total

effective labor for the firm by all of its workers, and f is an increasing and concave function

of Zt (f
′ > 0, f ′′ < 0). This can be thought of either as the firm having a fixed amount of

capital, or as facing a downward-sloping demand curve due to monopolistic competition. A

firm chooses the wage path for a worker, taking as given the path of the marginal revenue

product of effort (µt ≡ ptf
′(Zt)) and the fact that the firm will only fire for cause. For

an individual worker µt is exogenous, as µt is only infinitesimally affected by what any one

worker does.

Firms hire workers by offering each worker an implicit long-term contract. By assumption,

firms can commit to a wage path (that is conditional on the macroeconomic environment).

This assumption is important because, as will be shown, firms will have the incentive to

renege on their promises as the expected discounted value of the surplus the worker generates

for the firm falls over time. Because it is beneficial for firms to defer payments to incentivize

effort, workers’ wages will exceed their productivity in the later segments of their careers at

a given firm.

Thus, it is fair to question whether firms will be willing to honor their contracts. One

possible interpretation of the model is that these long-term contracts, although implicit,

are legally enforceable and firms are bound by law to keep their promises. However, even

without such legal protection firms might be willing to honor their implicit contracts for

reputational reasons. A firm’s ability to hire workers and entice them to exert effort depends

on a worker’s belief that the firm will honor its promises. If a worker believes that a firm

is untrustworthy after it observes a firm renege on a contract, the firm’s ability to extract

effort will be compromised. Formally, this incentive could be modeled as a game in which the

firm’s optimal strategy is to honor all contracts when the workers’ punishment strategy for

broken promises is stringent enough. Although we do not explicitly model the punishment
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for promise-breaking firms in this paper, it seems reasonable to believe that some firms are

sensitive enough to their reputation to be willing to honor their implicit contracts.

The optimal contract for the firm maximizes the marginal profit gained from a worker

over the worker’s career with the firm. Denoting the expected value of discounted profit

gained from a worker from time t0 on as πt0 , the optimal contract is the solution to:

max
{wt}

πt0 =

∫ ∞

t0

e
−

∫ t
t0
[rt̃+a(m,zt̃)]dt̃[µtz(∆t)− wt]dt (13)

such that ∆t satisfies (12) for all t > t0. The firm wishes to maximize the difference between

µz, the product gained from a worker, and wages w, discounted by the interest rate r and

the separation rate a(m, z).

The retrograde approach can be used to reformulate the problem as

max
{wt}

πt0 (14)

s.t. π̇t = −
(
[µtz(∆t)− wt]− [rt + a(m, z(∆t))]πt

)
∆̇t = −

(
[u(wt)− v(z(∆t))− ψt]− [ρ+ a(m, z(∆t))]∆t

)
and proceed to solve the problem using the Hamiltonian equations. The Retrograde Hamil-

tonian for the firm’s problem is then:

H = −λ
(
[µz(∆)−w]−[r+a(m, z(∆))]π

)
−ζ

(
[u(w)−v(z(∆))−ψ]−[ρ+a(m, z(∆))]∆

)
, (15)

where λ is the retrograde co-state variable for π, and ζ is the retrograde co-state variable

for ∆. Expressed as (14) and (15), it becomes clear that the firm’s problem is equivalent to

choosing a path of wages to maximize the expected profit from worker at time t0 (πt0), with
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an eye toward the effect of wages on the expected future path of the worker’s surplus—and

hence of firm profits, which depend on the worker motivation provided by that surplus.

The first-order condition for the worker’s wage path is:

1

u′(wt)
=
ζt
λt
. (16)

The ratio st ≡ ζt
λt

is a measure of “seniority rights” accumulated by the worker during their

tenure with the firm. The co-state variable ζt is the marginal value of the utility differential

of the worker ∆t to the firm and λt is the marginal value of the future expected profit. Thus

st represents the value of the worker’s utility to the firm in units of future expected profit.

Equation (16) shows that the higher a worker’s seniority st, the more a firm is willing to

pay for an extra unit of that worker’s utility. As a result, the wage is a monotonic function

of seniority. For example, u(w) = w1−(1/σ)

1−(1/σ)
implies wt = sσt where σ is the elasticity of

intertemporal substitution.

The Hamiltonian equations for the state variables in (15) imply that seniority st obeys:

st =

∫ t

t0

e−
∫ t
t′ [ρ−rt̃]dt̃[µt′ +mπt′ ]z∆,t′dt

′, (17)

where πt′ is the expected value of profits obtained from the worker after time t′ and z∆,t′ is

the partial derivative of effort z with respect to the utility differential ∆ at time t′. Equation

(17) indicates that st is an accumulation of the value of worker utility to the firm. The value

of worker utility to the firm reflects the marginal effect in the past of the utility differential ∆

on effort (z∆,t′), multiplied by the value of marginal effort in terms of firm profit (µt′ +mπt′).

The latter combines the direct effect of increased output per extra unit of effort µt′ with the

indirect effect mπ stemming from the reduction in the probability of worker dismissal, and

therefore on the probability the firm is obliged to continue with the implicit contract.
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The inclusion of z∆,t′ in the integrand makes it clear why it is optimal for the firm to

make wages depend on seniority. Recall from equation (12) that ∆t is the discounted sum of

the flow utility of the worker
(
u(w) + v(z)− ψ

)
from time t onward. Thus, if the firm gives

a worker a unit of utility (via the worker’s wage) at time t, this will be reflected in the value

of ∆ from the time the worker is hired at t0 to the moment the utility is realized at time t.

This means that a unit of utility promised to the worker at future date t acts as a carrot

until that time; increased worker effort is derived not from utility in the present, but from

expected future utility. By integrating the marginal benefit of effort (z∆,t′) over the interval

[t0, t], equation (17) captures the marginal benefit to the firm from promising the wage wt

at time t as the accumulation of benefits the firm receives from the moment the worker is

hired to the moment the wage is paid out at time t.

The discounting in (17), viewing time t utils from time t′, is given by e−
∫ t
t′ (ρ−r)dt̃ because

utility at time t has to be discounted at the rate ρ+a(m, z) back to t′ to reflect the effect on

the cost of job loss ∆ at t′, while future dollars written into the contract at time t become

cheaper at the rate r + a(m, z). The effects of the attrition rate a(m, z) cancel out, because

this affects the discounting of utils and dollars equally. Beyond that, utils at t are worth

fewer utils at time t′ if the worker’s discount rate ρ is high, and are worth more in dollars at

time t if those dollars are easy to come by because r is high.

The optimal long-term contract that results from the firm’s problem is time-inconsistent

in the sense that the optimal contract that maximizes the expected profit of the firm from

a worker at hiring π0, does not maximize expected profit to the firm at future dates. In

other words, if the firm were able to renegotiate the contract at future dates without any

consequence, it would be eager to do so. However, our seniority measure st is able to encode

the value of having promised higher wages in the past.

The next section analyzes the optimal implicit contract in depth. Let us preview the
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Figure 1: Optimal contract in (∆, π)

central intuition here. Seniority st captures the value of worker utility to the firm. In

other words, ∆t is valued by the firm at st dollars per unit of utility on the margin. The

continuation of the optimal contract at any time t after a worker is hired can be interpreted

as the contract maximizing at time t the “time-consistent objective,” Jt = πt + st∆t at

each point in time, which combines the value of expected future profits from worker πt with

the value captured by the term st∆t of keeping the utility differential high for the sake of

motivating the worker at previous moments of time. That is, the continuation of the contract

from time t on solves

max
wt

πt + st∆t, (18)

where st is taken as given, ∆t satisfies (12), and πt satisfies (13).

In panel (a) of Figure 1, we illustrate how the optimal contract can be determined given

(18). First, there will be some bounded-above set of attainable combinations of ∆ and π at

any time t, given the expected path of the three key variables exogenous to the contract: µ, ψ

and r.11 The optimal contract will always lie at a point on the efficient frontier of this (∆, π)

11Note that the set of possible (∆, π) pairs will always be in the southeast quadrant. If π were greater
than zero the firm would immediately hire more workers until the resulting decline in the marginal product
µ brought π back down to zero. If ∆ were less than zero, then working would be less attractive to workers
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possibility set. In Appendix B.1, we prove that the relevant part of the efficient frontier will

be strictly downward-sloping and strictly concave in steady-state. In panel (a) of Figure 1,

the efficient frontier is represented by the thick curved line.12 Now, note that for a given

level of seniority s, the time-consistent objective π + s∆ can be shown on the ∆ − π plane

as a straight line with the slope −s.

In steady state, firms maximize the “time-consistent objective” π + s∆ in steady state

because strict concavity of the efficient frontier guarantees that that there is only one point

with the slope −s needed to satisfy the local necessary condition for trade-offs between

π and ∆. Thus, we can think graphically for a tangency between the line π + s∆ = J

where J is some constant, and the efficient frontier. For example, the points (∆∗(s1), π
∗(s1))

and (∆∗(s2), π
∗(s2)) on the efficient frontier in Figure 1 represent the tangents between the

efficient frontier and the lines π+s∆ = J for the highest possible J ′s at two different seniority

levels s1 and s2.

In steady state, the expected present value of future profits from senior workers is negative.

In equilibrium, a firm will hire workers up to the point where πt0 , the expected discounted

profit from the worker at the time of hiring, is zero. The firm backloads wages, pushing

wages further into the future than productivity. Therefore, after some time the firm will

face relatively more future wages than future productivity from the worker and the worker

ends up being a contractual burden on the firm. As a result, the fact that a worker is more

likely to stay with the firm with greater effort diminishes the firm’s incentive to defer wages

indefinitely.

than unemployment.
12The efficient frontier is a subset of the upper right-hand boundary of the convex hull of attainable (∆, π)

pairs. The efficient frontier can be disconnected if the region of possible (∆, π) pairs is non-convex. Non-
convexity may arise if firms are able to place workers on temporary leave. If ∆ falls such that the implied
level of effort z is less than zero, it is beneficial for the firms to temporarily lay off the workers (with pay)
and get zero effort instead. This arrangement would not be a breach of the long-term contract as the firms
would still honor the terms of their agreement. In any case, in steady state, layoffs are unnecessary and the
(∆, π) possibility set will be convex.
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Panel (a) of Figure 1 shows that the optimized value of the time-consistent objective

π∗(s) + s∆∗(s) is non-decreasing in seniority.13 Because the efficient frontier is downward

sloping, the tangency point representing the optimal (∆, π) for a given level of seniority s

moves southeast along the efficient frontier as s increases. The value of π + s∆ is equal to

the π-intercept of the tangency line, which increases with seniority s. However, π itself is

decreasing in s: the firm is willing to trade off profit for a higher expected present value of

worker utility as seniority s rises. At a firm that has workers at various levels of seniority,

senior workers will be more of a burden on the firm (π is more negative), will value their

jobs more (∆ is higher), will have higher productivity (z is higher), and are less likely to be

fired (a(m, z) is lower) than junior workers.

2.4 Discussion

Let us pause to take stock of our contributions so far, and how it lays the foundation for

further investigation. First is deriving a precise definition of seniority st and showing that

a worker’s wage profile reflects this measure. Unlike previous studies on deferred compen-

sation, our framework provides not only the general intuition that compensation is deferred

to motivate workers, but also the logical structure of the compensation scheme and its de-

terminants.

Second, our results allow us to interpret the gradient of the tenure-wage profile. We show

that the increase in wages with seniority depends on the effect of the future wage on the path

of past effort multiplied by the marginal product of effort along that path. This allows for

a much richer interpretation of the estimates governing tenure-wage relationships, opening

up the possibility for empirical decompositions of the components of seniority wages. A

key reason we are able to provide determinate expressions for the path of seniority wages

(unlike past studies) is that we allow effort to be a continuous choice variable, while past

13See Proposition 2 for a proof.
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work on effort choice restricts the worker to a binary work/shirk choice (e.g. Lazear 1979,

1981, Akerlof and Katz, 1989). We are able to solve and interpret this more complex model

thanks to the Retrograde approach.

Admittedly, assuming that the worker’s utility is monotonically increasing and concave

in the wage is also critical to the determinacy of the wage profile. As noted previously,

we rationalize this assumption by regarding the worker as being liquidity constrained and

impatient, making the worker unable to borrow and unwilling to save. But note that even

with more complex assumptions about borrowing and saving, the worker’s first-order con-

dition for effort (4) would remain unchanged and the firm’s first-order condition (13) would

remain unchanged. What would change would be the expression for ∆ in equation (12) and

the expression for seniority in (17). Most of the key insights from the analysis here would

remain intact.

Third, our results point to many other things besides wages that are affected by seniority.

As we will show in Section 4, our framework allows for easy extensions: we can easily

incorporate additional features into the firm-worker relationship and analyze the evolution

of the additional variables.

3 Digging Further into the Optimal Contract

In this section, we analyze more deeply the evolution of the optimal contract over the worker’s

tenure with the firm. First, we show that the contract that maximizes the “time-consistent

objective” is equal to the optimal contract.

Proposition 1. The contract that maximizes the time-consistent objective (18) every period

is identical to the optimal contract from the firm’s problem in (14).

To see this, notice that the solution to the problem in (18) gives the first-order condition
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for the path of wages from (14) as given by (16). The first-order condition is

0 =
∂πt
∂wt

+ st
∂∆t

∂wt

,

where ∂πt

∂wt
= 1dt and ∂∆t

∂wt
= u′(wt)dt, resulting in an equation identical to (16) at time t. The

strict concavity in steady state of the (∆, π) Efficient Frontier guarantees there is only one

point on the efficient frontier with this slope. Thus, solving for the optimal wage wt from

(18) at each point in time will result in the optimal contract from (14).

Proposition 2. In steady state, ∆ is (weakly) increasing in worker seniority s, π is (weakly)

decreasing in s and the time-consistent objective π + s∆ is (weakly) increasing in s.

To see that π + s∆ is increasing in worker seniority consider the following. Recall from

Figure 1, that in steady state the possibility frontier of (∆, π) is constant over time. Then,

given two seniority levels s2 ≥ s1, let (∆1, π1) maximize π + s1∆ and (∆2, π2) maximize

π+s2∆ in the feasible set. First, note that π1+s1∆1 ≥ π2+s1∆2 and π2+s2∆2 ≥ π1+s2∆1

by definition. Subtracting the two conditions, we get (s2 − s1)∆2 ≥ (s2 − s1)∆1, which

implies that ∆2 ≥ ∆1. Therefore, ∆ is non-decreasing in seniority. Next, from π1 + s1∆1 ≥

π2+ s1∆2 we get π1 ≥ π2+ s1(∆2−∆1) ≥ π2. Thus, π is non-increasing in seniority. Lastly,

π2 + s2∆2 ≥ π1 + s2∆1 ≥ π1 + s2∆1 − (s2 − s1)∆1 = π1 + s1∆1 which shows π + s∆ is

non-decreasing in seniority.

Using Figure 1b we can examine the evolution of the optimal contract more closely over

the worker’s tenure with the firm. As will be shown in Proposition 3, any worker who neither

quits nor is fired will gain seniority s and move down along the (∆, π) Efficient Frontier. The

value of the utility differential ∆ when the worker is hired is ∆0 = v′(0)
m

. This follows from

equation (5) and the fact that in equilibrium, the worker’s effort must be zero when hired

because if effort were strictly positive when π was zero, then it would be possible for the

firm to gain strictly positive profit by adding a period of zero wages to the front end of
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Figure 2: Evolution of the optimal contract.

the implicit contract and get a positive expected present value of profits overall. But in

equilibrium, the marginal profit from a worker must be zero when a worker is hired. Panel

(b) also shows that the optimal contract in steady state will eventually reach a stationary

point depicted in the figure as (∆̄, π̄), which we explain in more detail below.

Up to this point, we have implicitly assumed that workers gain seniority with tenure.

In the following propositions, we describe the evolution of worker seniority and effort with

worker tenure at the firm.

Proposition 3. In steady state, seniority “s” starts at zero when the worker is initially

hired, and increases with tenure, until it reaches a stationary level s̄ that is the asymptotic

limit for seniority if a worker has a very long tenure with a firm.

Proposition 4. In steady state, the utility differential from hiring ∆ increases with worker

tenure until it reaches a stationary point ∆̄.

Corollary 1. In steady state, the worker’s effort z increases with worker tenure until it

reaches a stationary point.

To show Propositions 3 and 4, we describe the dynamics of the optimal contract using

phase diagrams given by the law of motion of the three variables π, ∆, and s. The optimal

23



contract lies on the three dimensional saddle path of the dynamics described by the steady

state differential equations,

π̇ = Π(π,∆, s) = −
(
(µz(∆)− w(s))− (r + a(m, z(∆)))π

)
∆̇ = ∇(π,∆, s) = −

(
(u(w(s))− v(z(∆))− ψ)− (ρ+ a(m, z(∆)))∆

)
(19)

ṡ = S(π,∆, s) = (µ+mπ)z∆(∆)− (ρ− r)s.

The partial derivatives of the accumulation functions Π, ∇, S, denoted by subscripts,

are:

Ππ = r + a(m, z(∆)) > 0

Π∆ = −(µ+mπ)z∆(∆) < 0

Πs = w′(s) > 0

∇π = 0

∇∆ = ρ+ a(m, z(∆)) > 0 (20)

∇s = −u′(w(s))w′(s) < 0

Sπ = mz∆(∆) > 0

S∆ = (µ+mπ)z∆∆(∆) < 0

Ss = −(ρ− r) < 0.

Notes: (A) The signs given for these partial derivatives are for the region in which µ+mπ > 0
(which is the relevant region, since that is initially true, and µ+mπ > 0 is necessary for ṡ > 0,
which in turn is what drives µ +mπ down. (B) The computation of the partial derivative
∇∆ uses the envelope theorem—or equivalently, the first-order condition v′(z) = m∆. (C)
z∆∆(∆) < 0 relies on the assumption v′′′(z) > 0, which amounts to assuming that at high
levels of effort the difficulty and therefore disutility of extra effort increases dramatically.
Differentiating the identity v′(z(∆)) = m∆ twice with respect to ∆ then yields z∆∆(∆) =
−v′′′(z(∆))[z∆(∆)]2

v′′(z(∆)
< 0.
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To visualize the three-dimensional phase diagram, we show three two-dimensional slices

through the stationary point, with the arrows showing the dynamics for key regions in the

applicable two dimensions. The signed derivatives above justify the dynamics shown and

the slopes shown for the isoclines (the π̇ = 0, ∆̇ = 0 and ṡ = 0 lines in the two-dimensional

slices). With two forward-looking variables, π and ∆, and one backward-looking variable,

s, there is a well-defined saddle path in three dimensions leading to the stationary point.

(The explosive dynamics in the π-∆ slice shows that being off that narrow path would make

it impossible to hit the stationary point.) The saddle path gives π and ∆ as functions of

s.

With the phase diagram in hand, first examine the evolution of worker seniority as de-

scribed by Proposition 3. In Figure 2a, we illustrate the evolution of seniority s in (s, π)

space, taking the path of ∆ as given. The thick lines represent the ṡ = 0 and π̇ = 0 loci

respectively. The direction of the dynamics is shown by the small arrows at right angles and

the saddle path is as labeled. From the boundary conditions of the Hamiltonian, we know

that seniority s is equal to zero when the worker is hired.14 Also, as illustrated, the contract

must begin with π = 0 in equilibrium as firms would otherwise hire more workers until their

expected profit declined to zero. Therefore, the saddle path begins at the origin in (s, π)

space and steadily accumulates until it reaches a stationary point (s̄, π̄) where the ṡ = 0 and

π̇ = 0 loci meet.

Together with the result that ∆ increases in s by Proposition 2 and the dynamics of the

phase diagram for s, Proposition 3 yields Proposition 4. To illustrate Proposition 4 from

another point of view, let’s look at the dynamics of the optimal contract in the (s,∆) space.

Figure 2b shows the evolution of seniority s and utility differential ∆. Again, the contract

begins at the point where the saddle path intersects with the ∆ axis. It becomes clear that

14The free end point condition for ∆̇ from the retrograde perspective implies that ζ = 0 and the free end
point condition with salvage value for π̇ implies λ = 1 at time t0.
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both seniority and the utility differential ∆ increase over time until it reaches a stationary

point (s̄, ∆̄) where the ṡ = 0 and ∆̇ = 0 loci meet. Lastly, effort increases with time as well

since it is a monotonic function of ∆ as described by Corollary 1.

Combined, Figures 1 and 2 show the three-dimensional saddle path of s,∆ and π on

which the contract lies. As previously described, the phase diagrams reveal that there is a

stationary point (π̄, ∆̄, s̄) where the contract comes to rest where ṡ = ∆̇ = π̇ = 0. Seniority

s stops growing in the end because as s increases the term mπ in the µ+mπ of the integrand

for s in equation (17) becomes increasingly negative. Beyond a certain point, promising the

worker higher wages would make them stay too long from the firm’s viewpoint, canceling out

the benefit of extra productivity. This limit to how far s can rise is a reflection of diminishing

returns to the firm from raising wages. Also preventing seniority s from rising indefinitely

is worker impatience. If ρ > r, payments far in the future have less effect on effort in the

present.15

Finally, we describe the relationship between the optimal wage and worker productivity

in the following proposition.

Proposition 5. As worker tenure converges to infinity, the wage is greater than the marginal

product of the worker, µz. In other words, for sufficiently senior workers their wage is greater

15Note that combining equation (16) with the differential equation for seniority in (19) yields:

d( 1
u′(w) )

dt
= (µ+mπ)z∆(∆)− (ρ− r)

1

u′(w)
.

This is an “inverse wage Euler equation” for this efficiency wage model that can be compared to the inverse
wage Euler equation in search models such as, for example, the wage Euler equation in Acabbi et al.(2022)’s
Proposition 3.3. The equation can be further simplified by assuming log utilities u(w) = log(w) and ρ = r
to derive,

ẇ

w
= (µ+mπ)

z∆(∆)

w
,

which governs the changes in the path of wages over the life cycle of the contract. The termmπ z∆(∆)
w captures

the increase in worker retention to offered utility in dollar units, which is analogous to Accabi et al.(2022)’s
expression for wage growth which depends on the elasticity of retention probability to offered utility. We

have an additional term for increases in productivity from worker effort µ z∆(∆)
w due to the efficiency wage

nature of our framework, which is not present in search and matching frameworks.
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Figure 3: Wage vs productivity

than their productivity.

Consider what happens at the stationary point where ṡ = 0. We know that the wage

w eventually ends up above the marginal product of the worker µz because as t → ∞ the

stationary contract satisfies

π̄ =
µz̄ − w̄

r + ā
< 0. (21)

Equation (21) can be derived by substituting stationary values into the expression in equation

(13). The equation shows that the marginal product at the stationary point µz̄ must be less

than the worker’s wage w̄. Furthermore, we know that the worker’s wage must be below the

worker’s marginal product at some point earlier on to balance this, or the expected future

profits from taking on a worker at t0 would be negative and the firm would never agree to

hire the worker on such terms. Figure 3 shows the simplest possibility: marginal product

greater than the worker’s wage when the worker is junior and less than marginal product

when the worker is senior.16

16Looking at things from various different angles suggests the generality of the patterns shown by the
phase diagrams even with additional complications such as those discussed in the next section. First, any
counterparts to the equation ṡ = (µ + mπ)z∆(∆) − (ρ − r)s would imply that ṡ > 0 when s = 0, and
given the key “impatience” assumption ρ > r, that ṡ < 0 at a high enough s. Without venturing too deep
into the specifics of any particular model, this suggests that s starts at zero, then gradually rises toward an
asymptote. This fact, in addition to the argument that s controls the choice on a ∆-π possibility frontier,
as shown in Figure 1, guarantees the essentials of the dynamics discussed in this section.
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4 Extensions and Applications

In this section, we explore extensions and applications of our framework to show how it sheds

light on many aspects of worker-firm relationships. First, we consider the question of large

earnings losses from job loss. There is a disparity between empirical results reporting large

earnings losses and theoretical models that typically predict a smaller impact from job loss.

Also needing explanation is the fact that those senior workers who lose their jobs have higher

unemployment rates thereafter, even beyond the time they find the very next job. Second,

we consider how optimal monitoring intensity evolves with seniority. Various subtleties can

make the direction ambiguous without additional assumptions on the shape of the disutility

of effort function v(z). Yet, we show that plausible assumptions guarantee that monitoring

intensity will fall with seniority. Third, we consider a firm being able to provide amenities

to workers in addition to wages to increase job pleasantness and investigate the optimal

strategy for the firm. We find that, in general, firms provide ordinary amenities to workers

in a manner similar to wages, but amenities that reduce a worker’s marginal disutility of

effort are especially attractive when effort elicitation is a problem, as in the type of model

presented here. Fourth, we consider a firm’s decision of how much on-the-job training to

provide. We show that, despite the fact that firm-specific human capital depreciates, it is

optimal to provide on-the-job training that makes firm-specific human capital rise throughout

a worker’s tenure with a firm.

4.1 Earnings Loss

Many empirical studies have found that there is a large loss in life-time earnings when

workers lose their jobs: a highly persistent negative shock to future wages and a persistent

increase in the likelihood of future unemployment.17 To date, most research on the topic has

17See, for example, Jacobson et al. (1993), Fallick (1996), Kletzer (1998), Couch and Placzek (2010), and
Lachowska et al. (2020).
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been conducted within the search and matching framework. For example, Davis and von

Wachter (2011) find that leading search models are unable to reconcile these findings with

theory. They find that realistically calibrated models predict much smaller earnings losses

than found in empirical studies. More recent work tries to reconcile the model to the data

by adding various features such as job ladders (Krolikowski, 2017, Jung and Kuhn, 2019),

human capital (Burdett et al. 2020), or both (Jarosch, forthcoming). In the model here,

large losses in life-time earnings naturally arise from the seniority wage structure. Wages

are a reflection of seniority, and when a worker is fired they lose the seniority they have

accumulated. Since seniority is not transferred from firm to firm when a worker is fired,

workers cannot regain the lost seniority even when reemployed. This force is not represented

in any of the aforementioned studies.

Figure 4 illustrates wage losses from the loss of seniority after job loss. Panel (a) shows

the seniority a worker accumulates with years at a firm. The solid lines depict the worker’s

accumulated seniority. After job loss, even if a worker is quickly rehired, the worker must re-

accumulate seniority from scratch as would any new hire. In Panel (b), the solid line shows

the worker’s wage and the dashed line shows the counterfactual wage of the worker had they

not been fired. The loss is considerable. In addition to the lost wage during unemployment

(the area labeled A), there is a persistent reduction in the wage at the next job compared
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to the counterfactual case. This is due to the difference in the level of accumulated seniority

(the area labeled B). Thus, there is a large and persistent earnings losses from temporary

job loss.

The model here also explains why the probability of future unemployment is persistently

greater after job loss: it is due to the lower effort level of a worker who has less seniority.

The utility differential between being employed and unemployed increases as a worker gains

seniority, which leads to effort increasing with seniority. Thus, senior workers are less likely

to be fired because they work harder and make fewer mistakes, as shown in Figure 5. When

workers lose their accumulated seniority with job loss, the effort level is reset and this leads

to a persistent increase in the probability of future job loss, even after they have found their

next job.

4.2 Variable Monitoring

In this section we consider how a firm should vary monitoring intensity over the worker’s

tenure. To capture the trade-offs inherent in the monitoring of workers, we add the cost of

monitoring into the firm’s problem. We denote the total cost of monitoring to the firm as

c(m) ≥ 0 and assume that the marginal cost is positive and increasing in the intensity of

monitoring (c′(m) > 0, c′′(m) > 0) except that c′(0) = 0. That is, we assume that the first
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bit of monitoring is very easy, with only a second-order cost: c′(0) = 0. These functions are

defined over the nonnegative reals.

Given the worker’s first-order condition v′(z) = m∆, we define Z(x) = v′−1(x), with

x = m∆, or equivalently, m = x
∆
. Furthermore, we make assumptions on the disutility of

effort to derive clear implications for monitoring. Because monitoring intensity determines

the attrition rate which in turn affects effort, the shape of the disutility of effort function

plays an important role on the path of monitoring intensity. First, note that our assumptions

on v(z) (v′(·) > 0, v′′(·) > 0, limz→1 v
′(z) = +∞) implies that 1 − Z(m∆) > 0). We also

assume

(1− z)v′′(z)

v′(z)
(22)

is increasing in z and ≥ 1. This is equivalent to assuming

xZ ′(x)

1− Z(x)

is decreasing in x and ≤ 1.18 Given the assumption that v(z) → ∞ as z → 1 that we

use to represent the idea that z = 1 —where no big blunders would ever happen—is an

18These assumptions, for example, are satisfied by the attractive functional form with ϑ > 0,κ > 0,
ℓ ∈ [0, ϑκ], and ϱ ≥ − ℓ

ϑ :

v(z) = ϱ+ ℓz +
κ
ϑ
(1− z)−ϑ, v′(z) = ℓ+ κ(1− z)−(1+ϑ),

v′′(z) = (1 + ϑ)κ(1− z)−(2+ϑ), v′′′(z) = (2 + ϑ)(1 + ϑ)κ(1− z)−(3+ϑ),

(1− z)v′′(z)

v′(z)
=

(1 + ϑ)

1 + ℓ
κ (1− z)1+ϑ

≥ 1,
v′′′(z)v′(z)

v′′(z)2
= (2 + ϑ)[

1

1 + ϑ
+
ℓ

κ
(1− z)1+ϑ] ≥ 1.

For this functional form, when x ≥ ℓ+κ (the relevant range, since any x = m∆ below ℓ+κ would yield no
effort, so the firm would go there),

z(x) = 1− [
x− ℓ

κ
]−

1
1+ϑ

z′(x) =
1

κ(1 + ϑ)
[
x− ℓ

κ
]−1− 1

1+ϑ > 0

z′′(x) = (
−(2 + ϑ)

κ2(1 + ϑ)2
[
x− ℓ

κ
]−2− 1

1+ϑ < 0.
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unattainable ideal, it is a mild additional assumption to assume that (1−z)v′′(z)
v′(z)

is weakly

increasing in z.

With these assumptions, we can show that the (∆, π) Efficient Frontier with endogenous

monitoring is concave, as was the case for the case when monitoring intensity was exogenously

given.19 This implies that the dynamics of (π,∆, s) as well as the time-consistent objective

π + s∆ will be as analyzed in Section 3. Appendix B.1 also goes most of the way toward

showing that monitoring intensity unambiguously declines with seniority. To solve for the

optimal path {mt}, derive the Hamiltonian equations for the firm’s problem (15) and the

first-order condition ∂H
∂m

= 0:

[µ+mπ]∆Z ′(m∆)︸ ︷︷ ︸
benefit of monitoring

− [π + s∆](1− Z(m∆)︸ ︷︷ ︸
indirect cost

− c′(m)︸ ︷︷ ︸
direct cost

= 0. (23)

Appendix B.1 shows (a) that for a given ∆, higher m strictly lowers the left-hand side of

this first-order condition, ensuring that there is a unique optimum for m and (b) that for a

given value of m, an unchanged s and higher ∆ reduces the left-hand side of this first-order

condition. Of course, given the concavity of the (∆, π) Efficient Frontier, higher ∆ goes

along with higher s, which further reduces the left-hand side of this first-order condition for

optimal m at any given value of m. That guarantees that as ∆ increases, optimal m must

fall.

(When x ≤ ℓ, we assume z(x) = 0.) Also, note that

z′(x)

1− z(x)
=

1

(1 + ϑ)(x− ℓ)

— which is decreasing in x in the domain [ℓ+ κ,+∞). Also, in that same domain,

xz′(x)

1− z(x)
=

x

(1 + ϑ)(x− ℓ)
≤ 1,

since ℓ
κ ≤ ϑ.

19See Appendix B.1 for a proof.
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The intuition and a key step in the Appendix B.1 proof thatm is decreasing with seniority

can be seen by dividing the first-order condition for optimal m through by 1−Z(m∆):

[
µ

m
+ π]

(
m∆Z ′(m∆)

1− Z(m∆)

)
︸ ︷︷ ︸

benefit of monitoring

− [π + s∆]︸ ︷︷ ︸
indirect cost

−
(

c′(m)

1− Z(m∆)

)
︸ ︷︷ ︸

direct cost

= 0. (24)

After dividing through by 1 − Z, the marginal benefit of monitoring is declining with

higher ∆ given fixed m because both the factor µ
m
+π and the factor xZ′(x)

1−Z(x)
are positive and

declining—the former for reasons discussed above, the latter by a key assumption. The first

piece of the marginal cost of monitoring divided by 1 − Z is π + s∆, which increases with

seniority for reasons discussed above, given the concavity of the (∆, π) Efficient Frontier

with endogenous monitoring. The second piece of the marginal cost of monitoring divided

by 1 − Z is c′(m)
1−Z(m∆)

, which is obviously decreasing with fixed m and increasing ∆, simply

because 1− Z declines.

Monitoring intensity declining with seniority when it is endogenous is a key finding. It

would be an unusual data set that included a measure of monitoring intensity, but this

prediction of monitoring intensity declining with seniority could be taken directly to the

data if there were. As it stands, it accords with our sense of how things are within most

organizations.

To end this subsection, we note that with endogenous monitoring, we can no longer

guarantee that effort Z(m∆) increases with seniority. We cannot rule out the possibility

that monitoring intensity declines so dramatically with ∆ that this decline overwhelms the

direct effect of higher ∆ on worker effort. If effort ever does decline with seniority, it would be

the firm’s choice to have that happen by its optimizing choice of monitoring intensity.
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4.3 Amenities

Firms may also provide amenities (vacation days, office space, shifts, etc.) to increase worker

utility in ways that vary with seniority. We explore amenities in this subsection.

Amenities can be utility-enhancing in an additively separable way, or they can pack

more of a punch for the firm by reducing the disutility of effort as well. To allow for

this possibility, let amenities A enter the disutility of labor function as a second argument:

v(z, A) with vA < 0, vAA > 0. Amenities are measured in dollars. The importance of

amenities that reduce the disutility of effort show up through zA(∆, A). To find zA(∆, A),

start with the worker’s first-order condition (5) modified to take into account amenities:

m∆ = vz(z, A). Taking the total differential of this equation with respect to variables z

and A we get 0 = vzzdz + vzAdA. Rearranging, this implies: zA(∆, A) =
dz
dA

= −vzA
vzz
. This

equation implies that if an amenity reduces the disutility of effort, then it increases effort,

holding ∆ (the value of the job to the worker) fixed.

The optimal path of amenities can be characterized by the first-order condition for the

effects of amenities on the modified Hamiltonian (15): ∂H
∂A

= 0. The optimal path of {At}

solves:

[µ+mπ]zA + s[−vA] = 1. (25)

The term [µ+mπ]zA represents the net benefit the firm reaps from additional effort. s[−vA]

is the firm’s indirect benefit from the increase in worker utility. The value of 1 on the right-

hand side is the marginal cost of providing an additional unit of amenities (because amenities

are measured by their cost in dollars per unit time).

If v(z, A) is additively separable (vzA = 0) then an increase in amenities does not affect
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the marginal disutility of effort and zA = 0. Condition (25) can then be expressed as,

s =
1

−vA

which is identical to the optimal condition for wages in equation (16) with the marginal

utility gain from amenities −vA replacing the marginal utility gain from wages u′(w). As

with wages, amenities increase as the worker gains seniority. These predictions seem to be

in line with observations from the real world. Examples of amenities that may not affect

the marginal disutility of effort may include vacation days, luxurious office spaces, or tuition

subsidies for employees’ families. Empirically, these kinds of amenities are often provided

more generously to more senior workers.

If v(z, A) is not additively separable, equation (25) becomes instead:

s =
−(µ+mπ)zA

−vA
+

1

−vA
. (26)

Consider amenities that decrease the marginal disutility of effort (vzA < 0), such as air

conditioning or ergonomic chairs that allow workers to work longer hours with less physi-

cal fatigue. They will increase effort, and as a result it is optimal to provide them more

abundantly. The first term on the right-hand side of equation (26), −(µ+mπ)zA
−vA

is negative in

that case. Therefore, all else equal, the second term, 1
−vA

, which goes up with A, needs a

higher value of A to satisfy the equation than if v(z, A) were additively separable. Intuitively,

making effort easier is an extra benefit and so it is optimal to provide more of such ameni-

ties than those that do not encourage effort. By the corresponding logic, amenities that

increase the marginal disutility of effort—such as video game equipment in a law office—will

rarely be provided because they discourage effort. Exceptions to the rule that distracting

amenities will rarely be provided may arise when workers are so highly motivated that these

distractions don’t impair their effort very much, or when their direct value to workers is high
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enough to counterbalance negative effects on effort.

Now, consider how the optimal provision of amenities will depend on seniority when

vzA < 0, by looking at what would happen to the marginal benefits and marginal costs of

amenities if A did not change. The cost of providing amenities is constant at 1 since we

measure amenities in dollars. In steady state, the net benefit from additional effort, [µ+mπ],

decreases with seniority. In the term s[−vA] representing the utility benefits from amenities,

not only s but also [−vA] rises with seniority since vzA < 0 and worker effort increases with

seniority. This is the other implication of the complementarity of amenities and effort when

vzA < 0. The overall effect of seniority on amenities is unclear. On the one hand, providing

more amenities that are complementary with effort to more senior workers is especially

valuable in creating an attractive career path, increasing effort early on. On the other hand,

the relief a firm feels when an expensive high-seniority worker departs (because π < 0)

reduces the benefit from the immediate effect of the current amenity level in encouraging

effort. This last effect can be very large if vzz is small, and so can overwhelm the value of

amenities going up with seniority for creating an attractive career path.

4.4 On-the-Job Training

Theories of human capital accumulation serve as the main alternative to deferred payment

schemes as the cause of upward-sloping wage-tenure profiles. While many papers assume one

or the other, it seems likely that both forces are at work simultaneously. The quantitative

effects of each should be measured empirically. To help provide a theoretical framework for

such investigations, we extend the basic model to consider the effect of on-the-job training on

human capital accumulation and firm investment in training. We consider how expenditures

on training will be allocated across a worker’s tenure and how human capital will be reflected

in the wage profile. A simple and intuitive way of modeling human capital is to assume that

36



human capital increases the effectiveness of effort. The productivity of a worker for a given

level of effort will increase with greater human capital.

Let ht be the stock of human capital accumulated by the worker. Then the firm’s expected

profit from a newly hired worker is as follows:

max
{wt,Tt}

πt0 =

∫ ∞

t0

e
−

∫ t
t0
[rt′+a(m,φ(ht′ )zt′ )]dt

′
[µtφ(ht)z(∆t)− wt − Tt]dt. (27)

The worker’s productivity is now a function of effective effort φ(ht)zt, the product of the

worker’s effort and a function of human capital. This specification assumes that workers

with higher human capital levels are more productive for a given level of effort.

Tt is the amount of training the firm provides for the worker at time t, in units of cost to

the firm. Training improves a worker’s human capital according to the function

ḣt = ϑ(Tt)− δht,

where ϑ(·) is a function that converts training, measured by the dollar cost of training,

into human capital, with ϑ′(·) > 0 and ϑ′′(·) < 0. Also, we assume that φ(·) is such that

φ(h) < 1 for any h, in line with z < 1 so that zφ(h) < 1. In other words, φ converges to an

asymptote at some level below 1. The attrition rate is now a(m,φ(ht)zt) = q+m(1−φ(ht)zt)

which is now governed by effective effort level φ(ht)zt. This specification goes back to the

idea implicit in shirking models that shirking can only be detected through the random

occurrence of big mess-ups. Those with more training make big mistakes less often for a

given level of effort.

Adapting the retrograde approach to this case with the ordinary state variable h as well

as the retrograde state variables π and ∆ is straightforward. While the direction of time

flow is meaningful to the interpretation of these variables, it is irrelevant to the solution of
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the optimal control problem. The firm’s Retrograde Hamiltonian can then be adapted from

(15) by including the forward law of motion for h:

H =− λ
(
[µφ(h)z(∆)− w − T ]− [r + a(m,φ(h)z(∆))]π

)
− ζ

(
[u(w)− v(z(∆))− ψ]− [ρ+ a(m,φ(h)z(∆))]∆

)
+ η[ϑ(T )− δh] (28)

where η is the co-state variable for the human capital accumulation function. The first-order

condition for the worker’s wage still follows (16) and the expression for seniority can be

solved as,

st =

∫ t

t0

e−
∫ t
t′ [ρ−rt̃]dt̃[µt′ +mπt′ ]φ(ht′)z∆,t′dt

′, (29)

which is identical to (17) except for depending on the marginal effect of effective effort.

The path of on-the-job training can be derived much like the wage profile. The first-order

condition for training is:

1

ϑ′(Tt)
= −ηt

λt
. (30)

As with wages, the left-hand-side of the equation shows the cost of increasing a unit of

human capital ht and the right-hand-side shows the benefits. Defining it ≡ − ηt
λt
, which we

call “the incentive for the firm to invest in training,”

it =

∫ ∞

t

e−
∫ t′
t [rt′′+δ+a(m,φ(ht′′ )zt′′ )]dt

′′
[µt′ +m(πt′ + st′∆t′)]zt′φ

′(ht′)dt
′. (31)

Greater human capital contributes to every term according to the proportional factor zφ′(h):

direct production proportional to µ, and a reduction in the attrition rate proportional to m

and valued at π + s∆. In steady-state, i̇t would be zero at values satisfying
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ī = z̄φ′(h̄)
µ+m(π̄ + s̄∆̄)

r + δ +m(1− z̄)
.

Then, how does optimal training Tt and human capital ht depend on seniority? The

following proposition addresses this question.

Proposition 6. Assume that the evolution of ∆, π and π + s∆ with worker tenure are

monotonic in the direction established by Proposition 2. Then, in steady state, on-the-job

training Tt is provided such that, once human capital ht begins to increase, it continually

increases with seniority.

The proof for Proposition 6 is provided in appendix B.2. To gain intuition behind this

result, it helps to first consider the case with the future path of human capital h fixed. Given

a fixed level of h, training senior workers more is a better deal for firms because (a) they

work harder, (b) because they are less likely to become separated from the firm with the

attendant loss of the human capital they gain from training and (c) because, in accordance

with the “time-consistent objective,” the reduction in attrition caused by the training itself

(as those workers make big blunders less often), is treated as more valuable the more senior

a worker is. Of course, the integral expression for it in (31) also shows that, given a concave

φ, the incentive to provide training goes down with the amount of human capital a worker

already has. So the actual rate of training can be higher for younger workers.

However, we can show that in steady state, despite human capital being subject to de-

preciation, once human capital begins to increase, it must continue to increase thereafter

(to an asymptote). Intuitively, this is because firms will provide more training to more

senior workers if the level of human capital is the same, meaning that it is impossible for

the junior worker to overtake the senior worker once he falls behind. The possibility of an

initial decrease in human capital is hard to avoid if a worker is hired with a large amount of

human capital and training is not cost effective. If human capital is zero at hiring, then this
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condition is satisfied (at least weakly) at the moment of hiring.

5 Conclusion

In this paper, we find that when firms cannot monitor worker effort perfectly, and can’t ask

for performance bonds, they will want to pay wages that reflect worker seniority. Seniority

is accumulated in a manner that reflects the value of the worker to the firm and can have

an important effect on the wage-tenure profile. When seniority matters like this, the loss in

seniority from job loss leads to large and persistent decreases in life-time earnings.

Extending the model, we find that when monitoring intensity can vary, firms have many

reasons to monitor junior workers more intensively than senior workers. When amenities

can be provided, the effort elicitation problem makes amenities that reduce the marginal

disutility of effort become especially attractive. For comparison, when effort is observable,

in which case only the effect of amenities on the level of disutility at the level of effort

required by the firm factors into their provision. Finally, when on-the-job-training is brought

into the model, firms will invest in on-the-job training in a way that guarantees that firm-

specific human capital increases with seniority, despite that human capital being subject to

depreciation.

The theoretical analysis in this paper points to many qualitative predictions that, with

real ingenuity in finding the right data, can be checked out empirically. Moreover, the

theoretical framework here suggests how to set up a structural model of workers’ tenure with

firms. Both of these efforts are beyond the scope of this paper. We hope we have set the

stage for such work, and have provided insights that aid understanding of the real world

even now.
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Appendix A The Steady State Equilibrium

A.1 Equilibrium

The equilibrium of this model consists of the path of endogenous variables

{
{wt(τ)}τ , {zt(τ)}τ , {∆t(τ)}τ , {st(τ)}τ , {πt(τ)}τ , µt, ψt

}
t

where wt(τ), zt(τ),∆t(τ), st(τ), πt(τ) denote wage, effort, utility differential, seniority, and

expected profit at time t from a worker hired at time τ . The variables must satisfy equations

(4), (12), (16), (17) at each time t for all cohorts τ , as well as conditions,

πt(τ) =

∫ ∞

t

e−
∫ t′
t [rt̃+a(m,zt̃)]dt̃[µt′z(∆t′(τ))− wt′(τ)]dt

′ (A.1)

µt = ptf
′(Zt) (A.2)

ψt = ū+
θt

Nt − Lt

∆0,t (A.3)

where total effective labor is defined as Zt ≡
∫ t

−∞ zt(τ)lt(τ)dτ , total labor supply Lt ≡∫ t

−∞ lt(τ)dτ , and lt(τ) denotes the number of workers hired at time τ that are employed by

the firm at time t. The number of workers a firm hires lt(t) is determined by the labor

market clearing condition π0,t = 0. As long as the marginal profit of a newly hired worker is

positive, the firm will hire more workers. If the marginal profit is negative, there will be no

hiring. Thus for markets to clear in equilibrium, the marginal profit of a newly hired worker

must be zero as long as there is positive hiring.
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A.2 The Steady State

The equilibrium dynamics of this model can be quite complex and beyond the scope of this

paper.20 Instead we focus on the steady state equilibrium and comparative statics to gain

some insight into the general equilibrium properties of this model.

In steady state, aggregate variables (ψ, µ, r, θ, π0,∆0, Z, L) must be constant. In addition,

the steady state involves a constant flow of new hirings balancing separations due to firings

and exogenous quits. The employment rate must equal the attrition rate,

θt =

∫ t

−∞
a(m, zt(τ))lt(τ)dτ = ātLt

where āt ≡
∫
a(m,zt(τ))lt(τ)dτ∫

lt(τ)dτ
.

The steady state equilibrium does not imply that the contract is at the stationary point.

The solution to ∆̇ = ṡ = π̇ = 0 visible in Figures 1, 2a and 2b does not describe the steady

state, but only the eventual condition of employees who by good fortune remain with the

firm for a long time. Since new workers are constantly being hired, much of the employed

labor force will always be far from this stationary point. Rather, the steady state of the

system involves constant motion out of unemployment and motion toward this stationary

point coupled with attrition into unemployment.

Two key variables ψ and µ determine the steady state path of wages, effort, and utility.

The flow benefit of unemployment ψ, as the opportunity cost of working, is counterposed to

the wage. Higher ψ increases the attractiveness of being unemployed and lowers the cost of

job loss to the worker, and all else equal, decreases labor supply. The marginal product of

effort µ, on the other hand, is critical in determining the firm’s demand for labor as it governs

the firm’s expected profit from workers. Furthermore, µ can be expressed as a function of

20See Kimball(1994) for an exposition of the dynamics of a basic efficiency wage model.
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total employment L as µ = pf ′(z̄L) where z̄ is the average effort of the firm’s employees

z̄t ≡
∫
zt(τ)lt(τ)dτ∫

lt(τ)dτ
.

We can then express the steady state equilibrium on the (ψ,L) plane in terms of appropri-

ate counterparts of supply and demand curves in the labor market. The labor supply curve

of workers is governed by the pseudo-utility of unemployment ψ. The supply of labor to the

firm is horizontal, since ψ is exogenous to the firm. Thus, ψ is analogous to the market wage

in a competitive labor market. However, the market supply curve for labor is not horizontal.

In steady state,

ψ = ū+
āL

N − L
∆0

where āt ≡
∫
a(m,zt(τ))lt(τ)dτ∫

lt(τ)dτ
is the weighted average attrition rate of labor as previously

described. This curve is upward sloping in general, the more so if the attrition rate ā

increases with ψ. For the supply curve to be downward sloping, it would require ā to be

a strong inverse function of ψ, but other things equal, ψ raises attrition as workers exert

less effort due to less fear of job loss.21 Barring such perversities, the supply curve will

be upward sloping. The curve will become very steeply sloped as total labor employed

approaches N.

Labor demand by firms is governed by the equilibrium condition for the expected profit

from newly hired workers π0 = 0 (there must be positive hiring in steady state). From the

firm’s perspective, a higher level of ψ lowers the cost of job loss for the worker and the firm

must either accept lower effort from workers or raise wages. Either way the profits expected

from a worker suffer and the expected present value of hiring a new worker falls unless the

marginal revenue product of effort µ rises to compensate for the reduced effort or increased

wages of a worker.

The relationship between the total number of employed workers L and µ is ambiguous.

21Shimer(2012) finds that employment exit probability is largely acyclical.
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At a cursory glance it would seem that the total number of workers L should decrease in

order for µ – a function of marginal productivity of total effective effort f ′(Z) – to increase.

However, since Z is the product of the average effort of firm’s employees z̄t =
∫
zt(τ)lt(τ)dτ∫

lt(τ)dτ

multiplied by L, it is possible that a fall in average effort might increase µ by enough to

force the firm to increase the number of workers in order to make up for less effort per

worker.

For example, consider the following. Suppose that the interest rate r is zero so that the

cross-section of workers gives the same relative weights to different seniorities as does the

integral giving the expected present value of the career of a newly hired worker. Substituting

in steady state values in equation (13) and imposing the condition π0 = 0 we arrive at,

w̄ = z̄µ = z̄pf ′(z̄L) (A.4)

where w̄ and z̄ are both present value averages and cross-sectional averages since r = 0.

Writing (A.4) in elasticity terms,

%∆w̄ = %∆z̄ +%∆p̄− γ[%∆z̄ +%∆L] (A.5)

where γ = −f ′′(Z)Z
f ′(Z)

, measures the degree of diminishing returns to labor input. Solving (A.5)

for %∆L , we obtain

%∆L =
1

γ
[(1− γ)%∆z̄ +%∆p̄−%∆w̄] (A.6)

Given (A.6), consider the following. Suppose that f(Z) = Zα where α = 0.7 implying

γ = 0.3. Now, suppose that an exogenous increase in ψ leads to a 3% decrease in effort z̄.

Then a 3% increase in wage w̄ and a corresponding 4% increase in L will be consistent with

the steady state labor demand condition (A.4).

As can be seen from the foregoing example, while the graph of π0 in terms of µ against ψ
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Figure 6: Steady state equilibrium

is upward sloping and the graph of ψ against Z is downward sloping, the graph of π0 = 0 in

L−ψ space can be either upward or downward sloping. If effort is only moderately responsive

to changes in ψ, z̄ is relatively constant and L will decrease, resulting in a downward-sloping

curve. However, if effort is highly responsive to changes in ψ, z̄ will fall sharply and L must

increase, resulting in an upward-sloping curve.

A downward-sloping curve corresponds to the usual intuition, since this curve is in effect

the firm’s demand curve for labor. If the number of workers and the amount of effective

labor move in opposite direction, as in the example above, the demand curve will be upward

sloping. One aspect worth noting is that the demand curve in ψ−L space must be downward

sloping for high levels of ψ, since sufficiently high levels of ψ would make it unprofitable

to employ any workers. This could be a continuous function of L but there may be a

discontinuous jump from positive to zero L as ψ rises. L can continue to decrease indefinitely

as ψ decreases since a firm may be sated with a certain amount of effective labor so that any

increases in the effort per worker may only reduce the number of workers needed.

The market demand and supply of labor can now be combined. Note that the supply

curve is the analog of Shapiro and Stiglitz’(1984) “No Shirking Condition,” while the demand

curve is the analog to their “Marginal Product of Labor” schedule. Panel (a) of Figure 6
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shows the standard case in which the demand is downward sloping. Panel (b) illustrates

the upward sloping demand curve in the case where at high levels of ψ the labor demand

suddenly drops to zero.

The comparative statics in the steady state can be analyzed from supply and demand.

An increase in N will move the ψ = ū+ āL
N−L

∆0 curve out, while a reduction in ū will move

it down. Therefore, both changes increase employment in Panel (a) of Figure 6 and decrease

employment in Panel (b), reducing ψ in both cases. An improvement in productive technol-

ogy that increases the marginal product of labor will move the demand curve outward. A

reduction in the exogenous quit rate, an improvement in monitoring technology or exogenous

worker motivation as reflected in worker utility functions will shift the π0 = 0 curve out in

ψ−µ space and thereby cause an increase in demand in ψ−L space. Any increase in demand

causes both L and ψ to rise.

In the intuitive case of a downward-sloping labor demand curve, the supply curve will

be the main determinant of the equilibrium unemployment rate due to the steep slope of

the supply curve for reasonable levels of unemployment.22 Therefore, the main effect of

shifts in the demand curve will be on equilibrium ψ, with very little effect on equilibrium

L. As a result, the effects of changes in the exogenous quit rate, monitoring technology or

worker utility functions on unemployment through the supply curve overshadow their effects

through the demand curve.

For example, if two distinct worker groups have different exogenous quit rates but the

same utility functions, the implied lower work effort for one group will have only a small

effect on the unemployment rate. The primary factor leading to a higher unemployment

rate for this group would be that labor discipline requires about the same average spell of

unemployment for both groups, but the flow into unemployment would be greater for the

22For example, the slope of the supply curve will equal a∆0
N

(N−L)2 = 100ā∆0N for 10% unemployment.
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Figure 7: Increase in unemployment benefits

group with the higher attrition rate, resulting in the percentage of persons unemployed at

any time to be greater.

Finally, as described above, the shape of the labor demand curve can potentially have

important implications on the comparative statics of the labor market. This can in turn

lead to interesting policy implications. For example, if effort is very responsive to changes

in ψ, the slope of the demand curve will become steeper and steeper and may even imply

that the demand curve is upward sloping. A steep demand curve can imply that increased

unemployment benefits will have very little effect on the unemployment rate and may even

lead to a decrease in the unemployment rate if the curve is upward sloping. This is because

an increase in unemployment benefits will increase ū which would shift the supply curve

upwards. The equilibrium values of ψ and L will move along the demand curve as depicted

in Figure 7 for the upward-sloping case. Nevertheless, the analysis shows that it is unclear

whether this is a desirable outcome as the increase in employment is driven by a large

decrease in effort and therefore productivity.
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Appendix B Proofs

B.1 Proof of the concavity of the (∆, π) Efficient Frontier

Because the case with exogenous monitoring intensity can be shown as a relatively straight-

forward extension of the endogenous monitoring case, we first prove the case in which firms

choose the optimal level of monitoring intensity every instant in time.

B.1.1 The Case with Endogenous Monitoring Intensity

We prove the convexity of the feasible set by recursively going back in time in a discrete-

time model that limits into the continuous-time firm problem. Note that any discrete-time

model that limits into the continuous-time firm problem is suitable for this proof. (If there

were any extra solutions in the continuous-time model, we impose the selection criterion of

selecting among solutions that are limits of the solutions to the discrete-time model.) Thus,

we have some flexibility in exactly how we set up the functional forms and the timing in

the discrete-time model. Denote dt as the length of a period and take the limit as the finite

horizon becomes infinite: T → ∞. Our argument will be based on what happens when dt

gets very small, showing that there is a uniform discrete-time grid size dt small enough the

(∆, π) Efficient Frontier can’t be at least weakly concave at time t and fail to be even weakly

concave at time t− dt.

Definitions

Denote the (∆t, πt) Feasible Set at time t, given period length dt, and terminal time T ,

by: Ωt;dt,T . Use the notation x = m∆ (or equivalently, m = x
∆
) and define

Z(x) = v′−1(x)
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so that

zt = Z(mt∆t).

Then

Z ′(x) =
1

v′′(v′−1(x))
=

1

v′′(Z(x))
> 0;

Z ′′(x) =
d

dx

( 1

v′′(v′−1(x))

)
=

−v′′′(v′−1(x))

[v′′(v′−1(x))]3
< 0.

Next, define

F(∆t, xt, wt; dt, T ) = {1 + [
xt
∆t

Z(xt)−
xt
∆t

− ρ− q]dt}∆t + [u(wt)− v(Z(xt))− ψ]dt

= [1− (ρ+ q)dt]∆t − xt[1− Z(xt)]dt+ [u(wt)− v(Z(xt))− ψ]dt

G(∆t, πt, xt, wt; dt, T ) = {1 + [
xt
∆t

Z(xt)−
xt
∆t

− r − q]dt}πt + [µZ(xt)− wt − c(
xt
∆t

)]dt

= [1− (r + q)dt]πt −
πt
∆t

xt[1− Z(xt)]dt+ [µZ(xt)− wt − c(
xt
∆t

)]dt

so that

∆t−dt = F(∆t, xt, wt; dt, T )

and

πt−dt = G(∆t, πt, xt, wt; dt, T ).

Define

Π̂t−dt(∆t−dt) = max
∆t,πt,xt

G(∆t, πt, xt, ŵt; dt, T ) (B.1)

s.t. (∆t, πt) ∈ Ωt;dt,T

F(∆t, xt, ŵt; dt, T ) ≥ ∆t−dt.

From a given point (∆t, πt) next period, and given ŵt, the optimization problem for x can
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be written out as:

max
x

[1− (r + q)dt]πt −
πt
∆t

x[1− Z(x)]dt+ [µZ(x)− ŵt − c(
x

∆t

)]dt

s.t. [1− (ρ+ q)dt]∆t − x[1− Z(x)]dt+ [u(ŵt)− v(Z(x))− ψ]dt ≥ ∆t−dt.

The Lagrangian is:

L = [1− (r + q)dt]πt −
πt
∆t

x[1− Z(x)]dt+ [µZ(x)− ŵt − c(
x

∆t

)]dt

+ S
[
[1− (ρ+ q)dt]∆t + x[Z(x)− 1]− (ρ+ q)∆t + u(ŵ)− v(Z(x))− ψdt−∆t−dt

]
.

By the envelope theorem,

S = −Π̂′
t−dt(∆t−dt).

We choose capital “S” for the Lagrange multiplier because due to the additive separability

of the effect of the wage, this slope of the possibility frontier for a given ŵt must be equated

to the overall slope of the possibility frontier, which in turn must be equated to seniority s

in the firm’s overall optimization problem.

The first-order condition for x, dividing through by dt, and using the worker’s first-order

condition, v′(Z(x)) = x, is:

µZ ′(x)− πt
∆t

[1− Z(x)− xZ ′(x)]− S[1− Z(x)]− 1

∆t

c′(
x

∆t

) = 0 (FOCx)

Assumptions

On the shape of u(w), on the domain of non-negative reals, we assume u′(w) > 0, u′′(w) <

0, and the Inada conditions limw→0 u
′(w) = +∞ and limw→∞ u′(w) = 0. We assume u(0) >

−∞ and for convenience normalize u(0) = 0. We assume ū ≥ u(0) = 0. As for c, on the
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domain of the non-negative reals, we assume only that c(·) ≥ 0, c′(·) > 0 and c′′(·) > 0.

On the shape of v(z), on the domain of the non-negative reals, we assume v(0) ≥ 0,

v′(·) > 0, v′′(·) > 0 (including v′(0) > 0, v′′(0) > 0), and limz→1 v
′(z) = +∞ (which implies

1− Z(x) > 0). We also assume

(1− z)
v′′(z)

v′(z)

is increasing in z, or equivalently, that

xZ ′(x))

1− Z(x)
(B.2)

is decreasing in x. This implies that:

−xZ
′′(x)

Z ′(x)
=
v′′′(Z(x))v′(Z(x))

v′′(Z(x))2
≥ 1 +

xZ ′(x)

1− Z(x)
> 1.

Defining

H(x) = x(1− Z(x)) > 0,

we assume

H′(x) = 1− Z(x)− xZ ′(x) ≥ 0, (B.3)

or equivalently,

xZ ′(x)

1− Z(x)
≤ 1.

Given x = v′(Z(x)) and the derivatives of Z = v′−1(x) computed above, this assumption is

equivalent to:

d

dx
v′(Z(x))(1− Z(x)) = Z ′(x)[v′′(Z(x))(1− Z(x))− v′(Z(x))] ≥ 0,
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or as an assumption directly on the shape of v(z),

(1− z)v′′(z)− v′(z) ≥ 0, ∀z ∈ [0, 1) ⇐⇒ (1− z)v′′(z)

v′(z)
≥ 1, ∀z ∈ [0, 1).

Endogenizing the wage. The wage choice will be handled in the following way: prove

concavity for a fixed wage at time t, wt = ŵ, and use the argument that the set sum of two

convex sets is convex to get concavity of the the (∆, π) Efficient Frontier given an optimal

wage choice. This works because the effect of (∆t, πt,mt, wt) on (∆t−dt, πt−dt) is additively

separable between wt and (∆t, πt,mt).

That is, to establish the concavity of the (∆, π) Efficient Frontier at T − dt simply

note that the set sum of two convex sets is convex. (The sum of two sets is the set of

all points that can result from vector addition of a point from one set and a point from

the other.) The two relevant convex sets are (A) the set of points vector-dominated by

π̂t−dt = Π̂t−dt(∆t−dt; dt, T ) and (B) the set of points vector-dominated by the set of points of

the form dt(u(w)− u(ŵ),−[w − ŵ]). The part of the northeast boundary of the convex set

A+B satisfying ∆t−dt ≥ 0 and πt−dt ≥ −µ∆
x

is the (∆, π) Efficient Frontier at T − dt, which

therefore is concave.

Backward induction. The strategy of considering a finite-horizon and discrete-time and

then taking the limit into continuous time and finally the limit into an infinite horizon

enables us to make a recursive proof of the concavity (and downward slope) of the (∆, π)

Efficient Frontier, starting at the end of time. First, consider what happens in the last two

periods. If t = T , effort at time T is zero since there is no future to motivate the worker, with

∆T = 0, and also πT = 0, optimal monitoring is zero. Then the curve (∆T−dt, Π̂T−dt(∆t−dt))
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is determined parametrically by:

∆T−dt = [u(ŵ)− v(0)− ψ]dt

πT−dt = −[ŵ + c(0)]dt.

That is, it is a single point. Set addition of this single point with the subgraph of (u(w) −

u(ŵ),−(w − ŵ)) implies—at the northeast boundary of that set sum—a very well-behaved

(∆, π) Efficient Frontier at time T − dt. All proof steps below assume that we are talking

about periods strictly earlier than T − dt.

Next, consider the following lemma.

Lemma 1. Recall that u′′ < 0 over the positive reals. This implies that, for any time t, the

slope of the (∆, π) Efficient Frontier at time t − dt, at any point that is locally concave, is

equal to − 1
u′ (w)

< 0.

Proof. Let (∆∗
t−dt, π

∗
t−dt) denote any point one can attain from some given (∆t, πt). Then,

at time t − dt, one can attain at least the profit π∗
t−dt + ϵ · dt at the cost of reducing the

utility differential to ∆∗
t−dt − u′(w)ϵ · dt + o(ϵ · dt) by reducing the current wage by ϵ. By

similar reasoning, one can attain at least the utility differential ∆∗
t−dt + u′(w)ϵ · dt+ o(ϵ · dt)

at the cost of reducing profit by π∗
t−dt − ϵ · dt by increasing the current wage by ϵ. Taking

the limit as ϵ→ 0 and using the local concavity at the point being considered on the (∆, π)

Efficient Frontier at t − dt, implies that the slope is − 1
u′ (w)

. Since u′ is positive the result

follows.

Extension of Lemma 1. Π̂t−dt is differentiable wherever it is locally concave.

Proof. The optimal contract must have a strictly positive wage at some future date. Unless

t = T (the case handled above), then even holding wt at ŵ, there is then a future wage we
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can consider varying in each direction following the model of the proof of Lemma 1, which,

combined with local concavity, implies differentiability.

Lemma 2. For any time t and period length dt, ∆t−dt ≤
(

1−(1−rdt)
T+dt−t

dt

r

)
u
(

−rπt

1−(1−rdt)
T+dt−t

dt

)
.

Proof. Note the timing convention in our equations: u(wt) and wt are not discounted in

how they affect ∆t−dt and πt−dt respectively. Restricting ourselves to period lengths that

divide the remaining time equally, the constrained maximum,

max
{wt+ndt}n

T−t
dt∑

n=0

[(1− rdt)nu(wt+ndt)]dt

s.t.

T−t
dt∑

n=0

[(1− rdt)nwt+ndt]dt ≤ −πt,

is achieved with a constant wage w. The maximum for this simplified problem is the quan-

tity given in Lemma 2. Now consider the actual situation in the model. Since ρ > r and

there is attrition, the discounting is more severe, which reduces the maximum, given the

non-negativity of u(w) and of w. And there are subtractions from at least ū ≥ 0 and from

v(z) ≥ 0 that also reduce the maximum. Finally, the non-negative costs of monitoring make

the constraint tighter and so would also reduce the maximum.

Corollary to Lemma 2: Given any downward-sloping line, the function Π̂t−dt(∆t−dt) must

go below that line as ∆t−dt → +∞.

Proof : Since the option to pay a wage different from ŵ has to be valuable, the inequality(
1−(1−rdt)

T+dt−t
dt

r

)
u
(

−rπt

1−(1−rdt)
T+dt−t

dt

)
for the (∆, π) Efficient Frontier at time t − dt has to
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imply at least as tight an inequality for Π̂t−dt(∆t−dt) :

Π̂−1
t−dt(πt−dt) ≤

(1− (1− rdt)
T+dt−t

dt

r

)
u
( −rπt
1− (1− rdt)

T+dt−t
dt

)
. (B.4)

Thus, Π̂t−dt(∆t−dt) is bounded on the right by a curve whose slope tends to −∞ as ∆t−dt →

+∞.

The Corollary to Lemma 2 is important because it means that geometrically, if Π̂t−dt(∆t−dt)

fails to be weakly concave globally, then there must be at least one pair of points (∆†, Π̂t−dt(∆
†))

and (∆‡, Π̂t−dt(∆
‡)) with ∆‡ > ∆† satisfying the following properties. Both points must be

at a locally concave part of the curve, share a tangent line, and points at all the values

of ∆t−dt ∈ (∆†,∆‡) must be strictly below that shared tangent line (see the example in

Figure 8). The inequality Π̂′
t−dt(∆t−dt) ≤ 0, which follows from the principle that relaxing

a constraint of the form on ∆ ≥ ∆̂ makes at least as high a π possible in the maximization

problem in (B.1), guarantees that the slope of this common tangent cannot be zero, when

combined with the existence of a point on the efficient frontier below the line segment be-

tween (∆†, Π̂t−dt(∆
†)) and (∆‡, Π̂t−dt(∆

‡)).

Proof by Contradiction. To demonstrate the concavity of Π̂t−dt(∆t−dt) we proceed by

contradiction. If, in the limit as dt→ 0, the (∆, π) Efficient Frontier ever fails to be weakly

concave, then there must be some t for which Π̂t−dt fails to be weakly concave even for very

small dt.23

Let’s focus on the pair of this type that has the lowest value of ∆†. In the proof by

23Note that because weak concavity is defined by weak inequalities, in an interval for τ that in the limit as
dt → 0, has weakly concave Π̂τ for some values of time τ and Π̂τ not weakly concave for some other values
of τ , it is possible to have a smallest value of τ for which Π̂τ is weakly concave but no largest value of τ for
which Π̂τ fails to be weakly concave. That is, the set of τ for which Π̂τ is weakly concave in the limit as
dt→ 0 will be closed, but the set of τ for which Π̂τ fails to be weakly concave in the limit as dt→ 0 will be
open.
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∆

Π̂t−dt(∆
†) + S†∆†

= Π̂t−dt(∆
‡) + S‡∆‡

(∆†
t−dt, Π̂t−dt(∆

†))

(∆‡
t−dt, Π̂t−dt(∆

‡))

Figure 8: An example of a non-concave (∆, π) Efficient Frontier

contradiction, we use the fact that these two points have exactly the same slope −S‡ =

−S† < 0.We also leverage the fact that Π̂t−dt(∆t−dt) is concave to the left of ∆†, by focusing

on the lowest value of ∆† that violates weak concavity. In addition, ∆ > 0 is needed to get

effort, meaning there will be positive ∆t at πt = 0 on the (∆, π) Efficient Frontier at time

t. Therefore, there will be a strictly positive ∆t−dt, before the (∆, π) Efficient Frontier at

time t− dt begins to drop below Π̂t−dt(∆t−dt) = 0. This guarantees that the intercept of the

common tangent line is non-negative:

Π̂t−dt(∆
†) + S†∆† = Π̂t−dt(∆

‡) + S‡∆‡ > 0.

Now, choose a very small positive value of dt—small enough to satisfy all of the conditions

that will become apparent below—as well as the divisibility condition that there exists an

integer N such that n dt = T −t. Then let (∆I , πI) be a point on the (∆, π) Efficient Frontier

at time t from which (∆†, Π̂t−dt(∆
†)) is reachable with wt = ŵ and an optimized value of

x. Likewise, let (∆II , πII) be a point on the (∆, π) Efficient Frontier at time t from which
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(∆‡, Π̂t−dt(∆
‡)) is reachable with wt = ŵ and an optimized value of x. Note that with small

enough dt this implies ∆II > ∆I . As notation, for given ŵt, let x
I be an optimal value of x

that makes (∆†
t−dt, Π̂t−dt(∆

†
t−dt)) reachable from (∆I , πI) and let xII be an optimal value of

x that makes (∆‡
t−dt, Π̂t−dt(∆

‡
t−dt)) reachable from (∆II , πII).

By the recursion hypothesis, Ωt;dt,T has a concave Efficient Frontier. That ensures that

for θ ∈ (0, 1),

((1− θ)∆I + θ∆II , (1− θ)πI + θπII) ∈ Ωt;dt,T .

Thus, it is useful to define:

F(θ) = F((1− θ)∆I + θ∆II , (1− θ)xI + θxII , ŵ; dt, T )

G(θ) = G((1− θ)∆I + θ∆II , (1− θ)πI + θπII , (1− θ)xI + θxII , ŵ; dt, T ).

Lemma 3. Suppose ∃(∆i
t−dt, Π̂t−dt(∆

i
t−dt)) pairs where i = {I, II}, such that Π̂t−dt((1 −

θ)∆I
t−dt+θ∆

II
t−dt) < (1−θ)Π̂t−dt(∆

I
t−dt)+θΠ̂t−dt(∆

II
t−dt), ∀θ ∈ (0, 1). Then, there exists some

(∆†
t−dt, Π̂t−dt(∆

†
t−dt)) and (∆‡

t−dt, Π̂t−dt(∆
‡
t−dt)) such that Π̂t−dt((1− θ)∆†

t−dt+ θ∆
‡
t−dt) < (1−

θ)Π̂t−dt(∆
†
t−dt) + θΠ̂t−dt(∆

‡
t−dt), ∀θ ∈ (0, 1) and S‡ = −Π̂′

t−dt(∆
†
t−dt) = −Π̂′

t−dt(∆
‡
t−dt) = S†.

Then, if (F(θ),G(θ)) parametrically traces out a downward-sloping and concave curve for

θ ∈ [0, 1] in (∆t−dt, πt−dt) space then Π̂t−dt((1 − θ)∆†
t−dt + θ∆‡

t−dt) ≥ (1 − θ)Π̂t−dt(∆
†
t−dt) +

θΠ̂t−dt(∆
‡
t−dt), ∀θ ∈ (0, 1). This is a contradiction.

Proof. For θ ∈ (0, 1), choosing the optimal x in the maximization problem defining

Π̂t−dt(∆t−dt) has to yield at least as high a value of πt−dt as choosing (1−θ)xI+θxII , while at

θ = 0 and at θ = 1, this is an exactly optimal value of θ. Therefore, if (F(θ),G(θ)) is above

the secant line between (∆†
t−dt, Π̂t−dt(∆

†
t−dt)) and (∆‡

t−dt, Π̂t−dt(∆
‡
t−dt)) for all θ ∈ (0, 1), then

Π̂t−dt((1− θ)∆†
t−dt + θ∆‡

t−dt) ≥ G(θ) ≥ (1− θ)Π̂t−dt(∆
†
t−dt) + θΠ̂t−dt(∆

‡
t−dt) for all θ ∈ (0, 1).
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Main Proof in the Endogenous Monitoring Intensity Case

What remains to be shown is that (F(θ),G(θ)) parametrically traces out a curve above

the secant line between (∆†
t−dt, Π̂t−dt(∆

†
t−dt)) and (∆‡

t−dt, Π̂t−dt(∆
‡
t−dt)). Note that as part of

the recursion hypothesis, we can take the strict downward slope (more negative than − 1
u′(w)

)

of the (∆t, πt) Efficient Frontier as given. The slope of the curve parametrically traced out

by (F(θ),G(θ)) is:

G′(θ)

F′(θ)
.

We need to show that this ratio is negative and that it becomes more negative as θ

increases. To compute and analyze this, expand out F(θ), then take its derivatives:

F(θ) = ((1− θ)∆I + θ∆II)[1− (ρ+ q)dt] + [u(ŵ)− ψ]dt

− dt{((1− θ)xI + θxII)[1− Z
(
(1− θ)xI + θxII

)
]− v(Z

(
(1− θ)xI + θxII

)
}

F′(θ) = (∆II −∆I)[1− (ρ+ q)dt]− (xII − xI)[1− Z
(
(1− θ)xI + θxII

)
]dt

F′′(θ) = (xII − xI)2Z ′((1− θ)xI + θxII
)
dt.

As dt → 0, the first derivative is positive in the limit, as none of the factors multiplying dt

are unbounded. The second derivative is also positive and converges to zero as dt→ 0.

Now, expand out G(θ) using the definition

α = πI −
( πII − πI

∆II −∆I

)
∆I .

Geometrically, this is the intercept on the π axis of the secant line between (∆I , πI) and

(∆II , πII), which is positive because the (∆, π) Efficient Frontier at time t starts on the left

with non-negative ∆ and zero π, and is concave by the recursion hypothesis. This definition
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allows us to write:

πI = α +
( πII − πI

∆II −∆I

)
∆I

πII = α +
( πII − πI

∆II −∆I

)
∆II

(1− θ)πI + θπII = α +
( πII − πI

∆II −∆I

)
((1− θ)∆I + θ∆II)

(1− θ)πI + θπII

(1− θ)∆I + θ∆II
=

α

(1− θ)∆I + θ∆II
+
( πII − πI

∆II −∆I

)
.

Recall our definition

H(x) = x(1− Z(x)) > 0,

and our assumption that

H′(x) = 1− Z(x)− xZ ′(x) > 0.
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Then,

G(θ) = [1− (r + q)dt]((1− θ)πI + θπII) + µZ((1− θ)xI + θxII)dt

− [ŵ + c
( (1− θ)xI + θxII

(1− θ)∆I + θ∆II

)
]dt−

[ α

(1− θ)∆I + θ∆II
+
( πII − πI

∆II −∆I

)]
H
(
(1− θ)xI + θxII

)
dt

G′(θ) = (πII − πI)[1− (r + q)dt] + (xII − xI)µZ ′((1− θ)xI + θxII)dt

−
( xII
∆II

− xI

∆I

) ∆I∆II

[(1− θ)∆I + θ∆II ]2
c′
( (1− θ)xI + θxII

(1− θ)∆I + θ∆II

)
dt

− (xII − xI)H′((1− θ)xI + θxII
)[ α

(1− θ)∆I + θ∆II
+
( πII − πI

∆II −∆I

)]
dt

+
α(∆II −∆I)

[(1− θ)∆I + θ∆II ]2
H
(
(1− θ)xI + θxII

)
dt

G′′(θ) = (xII − xI)2µZ ′′((1− θ)xI + θxII)dt

+ 2
( xII
∆II

− xI

∆I

) ∆I∆II(∆II −∆I)

[(1− θ)∆I + θ∆II ]3
c′
( (1− θ)xI + θxII

(1− θ)∆I + θ∆II

)
dt

−
( xII
∆II

− xI

∆I

)2( ∆I∆II

[(1− θ)∆I + θ∆II ]2

)2

c′′
( (1− θ)xI + θxII

(1− θ)∆I + θ∆II

)
dt

− (xII − xI)2H′′((1− θ)xI + θxII
)[ α

(1− θ)∆I + θ∆II
+
( πII − πI

∆II −∆I

)]
dt

+ 2(xII − xI)
α(∆II −∆I)

[(1− θ)∆I + θ∆II ]2
H′((1− θ)xI + θxII

)
dt

− 2α(∆II −∆I)2

[(1− θ)∆I + θ∆II ]3
H
(
(1− θ)xI + θxII

)
dt.

In the limit as dt→ 0, the first derivative is clearly negative.

For G′(θ)
F′(θ)

to become more negative as θ increases, what we need is:

d

dθ
ln
∣∣∣G′(θ)

F′(θ)

∣∣∣ = G′′(θ)

G′(θ)
− F′′(θ)

F′(θ)
> 0,

or equivalently,

G′′(θ)− G′(θ)

F′(θ)
F′′(θ) < 0.
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Note that as dt→ 0,

F′(θ)

G′(θ)
=

πII − πI

∆II −∆I
+O(dt).

Hence, since the second derivatives are O(dt), as dt→ 0,

G′′(θ)− G′(θ)

F′(θ)
F′′(θ) = G′′(θ)−

[( πII − πI

∆II −∆I

)
+O(dt)

]
F′′(θ)

= G′′(θ)−
( πII − πI

∆II −∆I

)
F′′(θ) +O(dt2).

Computing, using H′(x) = 1− Z(x)− xZ ′(x) and H′′(x) = −2Z ′(x)− xZ ′′(x) and

∆I∆II
( xII
∆II

− xI

∆I

)
= (xII − xI)((1− θ)∆I + θ∆II)− (∆II −∆I)((1− θ)xI + θxII),

yields:

dt−1
[
G′′(θ)−

( πII − πI

∆II −∆I

)
F′′(θ)

]
= (xII − xI)2µZ ′′((1− θ)xI + θxII)

+ 2
( xII
∆II

− xI

∆I

) ∆I∆II(∆II −∆I)

[(1− θ)∆I + θ∆II ]3
c′
( (1− θ)xI + θxII

(1− θ)∆I + θ∆II

)
−

( xII
∆II

− xI

∆I

)2( ∆I∆II

[(1− θ)∆I + θ∆II ]2

)2

c′′
( (1− θ)xI + θxII

(1− θ)∆I + θ∆II

)
+
[
2Z ′((1− θ)xI + θxII) + ((1− θ)xI + θxII)Z ′′((1− θ)xI + θxII)]

× (xII − xI)2
[ α

(1− θ)∆I + θ∆II
+
( πII − πI

∆II −∆I

)]
+ 2(xII − xI)

α(∆II −∆I)

[(1− θ)∆I + θ∆II ]2

×
[
1− Z((1− θ)xI + θxII)− ((1− θ)xI + θxII)Z ′((1− θ)xI + θxII)

]
− 2α(∆II −∆I)2

[(1− θ)∆I + θ∆II ]3
((1− θ)xI + θxII)[1− Z((1− θ)xI + θxII)]

−
( πII − πI

∆II −∆I

)
(xII − xI)2Z ′((1− θ)xI + θxII).
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These terms can be grouped in a way that allows us to show that each group is negative:

dt−1
[
G′′(θ)−

( πII − πI

∆II −∆I

)
F′′(θ)

]
=

( πII − πI

∆II −∆I

)
(xII − xI)2Z ′((1− θ)xI + θxII

)
−

( xII
∆II

− xI

∆I

)2( ∆I∆II

[(1− θ)∆I + θ∆II ]2

)2

c′′
( (1− θ)xI + θxII

(1− θ)∆I + θ∆II

)
+ (xII − xI)2Z ′′((1− θ)xI + θxII

)[
µ+

((1− θ)xI + θxII)((1− θ)πI + θπII)

(1− θ)∆I + θ∆II

]
+

2∆I∆II

[(1− θ)∆I + θ∆II ]3

( xII
∆II

− xI

∆I

)
×

{
(∆II −∆I)c′

( (1− θ)xI + θxII

(1− θ)∆I + θ∆II

)
+ α(∆II −∆I)[1− Z

(
(1− θ)xI + θxII

)
]

+ α(xII − xI)[(1− θ)∆I + θ∆II ]Z ′((1− θ)xI + θxII
)}
.

The first-line term on the right-hand side is negative simply because the downward slope

of the (∆, π) Efficient Frontier at time t makes πII−πI

∆II−∆I negative. The second-line term is

negative because c′′(·) > 0 and because its other factors are squared. To show that the

third-line term is negative, note both that Z ′′ < 0 and that concavity of the (∆, π) Efficient

Frontier at time t and positive ∆ at the top of the (∆, π) Efficient Frontier at time t implies

that the secant line from (∆I , πI) to (∆II , πII) has a steeper downward slope than ray from

the origin to (∆I , πI) and therefore that the far end of that secant line (∆II , πII) is on a

steeper ray from the origin than ((1− θ)∆I +∆II , (1− θ)πI + πII). Thus:

πII

∆II
≤ (1− θ)πI + θπII

(1− θ)∆I + θ∆II
,

and since xII ≥ xI (to be shown below),

µ+
(1− θ)xI + θxII)((1− θ)πI + θπII)

(1− θ)∆I + θ∆II
≥ µ+

xIIπII

∆II
= µ+mIIπII > 0.

The last inequality follows from the first-order condition for optimal xt, given ŵt, which
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rearranged is:

µ+
xIIπII

∆II
= ∆−1

t

{
(πt + S‡∆t)[1− Z(x)] + c′(

x

∆t

)
}
> 0.

πt +S‡∆t is non-negative as dt→ 0, trivially when πt = 0 and otherwise because then

Π̂t−dt(∆
†) + S†∆† = Π̂t−dt(∆

‡) + S‡∆‡ > 0,

and

πt + S‡∆t = [Π̂t−dt(∆
‡) +O(dt)] + S‡[∆‡ +O(dt)] = Π̂t−dt(∆

‡) + S‡∆‡ +O(dt).

The remainder of the right-hand side is all one group. Because c′, 1 − Z and Z ′ are all

strictly positive, and (∆II −∆I) > 0 simply by the orientation we have chosen (without loss

of generality), to show that this large group of terms is negative, we only need to show that

( xII

∆II − xI

∆I ) < 0 and (xII − xI) > 0. The lemmas below do that work.

Lemma 4. If µ + x
∆
π > 0, and π + S∆ ≥ 0,then for fixed values of ∆, π, µ,and S, the

expression µZ ′(x)− π
∆
[1− Z(x)− xZ ′(x)]− S[1− Z(x)]− 1

∆
c′( x

∆
), which we call FOCx, is

strictly decreasing in x, implying that, within the region in which µ + x
∆
π > 0, there is at

most one x that satisfies the first-order condition for optimal x given ∆, π, µ, and S and that

changes in the combination of ∆, π, µ,and S that raise this expression raise optimal x,if any

such new optimum exists, while changes in the combination of ∆, π, µ and S that lower this

expression lower optimal x, if any such new optimum exists.

Proof. Compute the derivative of this expression FOCx with respect to x:

(µ+
x

∆
π)Z ′′(x)−

(π + S∆

∆

)
Z ′(x)− 1

∆2
c′′(

x

∆
) < 0.
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Remark: Note that only the region where µ + x
∆
π > 0 and π + S∆ ≥ 0 is relevant to the

economic problem of the firm, for reasons discussed above in connection with the sign of the

third-line term.

Lemma 5. If µ+ x
∆
π > 0, π + S∆ ≥ 0, and S‡ = S†, then xII > xI .

Proof. Consider how going from I to II affects FOCx. For reasons discussed above in

connection with the sign of the third-line term, πII

∆II < πI

∆I and − πII

∆II > − πI

∆I . That pulls

FOCx up, since 1−Z(x)− xZ ′(x) > 0. µ and S are unchanged in going from I to II.

Remark. The proof strategy of proof by contradiction was necessary in order to have

Lemma 5 do the work it needs to do, since Lemma 5 depends on S‡ = S† (or actually, on

S‡ ≤ S†).

Lemma 6. If µ+ x
∆
π > 0, π + S∆ ≥ 0, and S‡ = S†, then xII

∆II <
xI

∆I .

Proof. Consider how going from I to II affects FOCx when x
∆
is held constant. To facilitate

that, rewrite FOCx with m = x
∆
. The objective here is to prove that monitoring intensity

m satisfies mII < mI . Note that the first-order condition for optimal x given ∆, π, µ, and

S is one hundred percent equivalent to the first-order condition for optimal m given ∆, π, µ,

and S. And having at most one optimal x given ∆, π, µ, and S implies having at most one

optimal m given ∆, π, µ, and S. Writing that first-order condition in terms of m rather than

x, rearranging and dividing through by 1−Z(m∆)
∆

yields:

[
µ

m
+ π]

m∆Z ′(m∆)

(1− Z(m∆))
− (π + S∆)− c′(m)

[1− Z(m∆)]
= 0.

In going from I to II, the common tangent means that π+S∆, which is the intercept of

that tangent, is unchanged. At a given value of m a higher value of ∆ makes − c′(m)
[1−Z(m∆)]

a
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bigger negative. As for the first term, the factor µ
m
+ π becomes a smaller positive number

for given m when π goes down in going from I to II, while for given m the factor m∆Z′(m∆)
1−Z(m∆)

goes down with the higher ∆, by our assumption that xZ′(x)
1−Z(x)

is decreasing in x = m∆. Thus,

the optimal m must be higher at II than at I:

mII =
xII

∆II
<
xI

∆I
= mI .

B.1.2 The case with exogenous monitoring intensity

The case with exogenous monitoring intensity can be easily proved using the argument for the

endogenous case. Furthermore, for the exogenous case, we only need the basic assumptions

on the disutility function v that we make in Section 2, and no longer need to make any

extra assumptions on the on the shape of function Z(·) that we needed for the endogenous

monitoring case, in particular assumptions (B.2) and (B.3). We show how the exogenous

case can be proved below.

As before denote the (∆t, πt) Feasible Set at time t, given period length dt, and terminal

time T , by: Ωt;dt,T . Define

Z(∆t) = v′−1(m∆t)

so that

zt = Z(∆t).

Then

Z ′(∆t) =
1

v′′(v′−1(∆t))
=

1

v′′(Z(∆t))
> 0;

Z ′′(∆t) =
d

d∆t

( 1

v′′(v′−1(∆t))

)
=

−v′′′(v′−1(∆t))

[v′′(v′−1(∆t))]3
< 0.

70



Next, define

F(∆t, wt; dt, T ) = {1 + [mZ(∆t)−m− ρ− q]dt}∆t + [u(wt)− v(Z(∆t))− ψ]dt

= [1− (ρ+ q)dt]∆t −m∆t[1− Z(∆t)]dt+ [u(wt)− v(Z(∆t))− ψ]dt

G(∆t, πt, wt; dt, T ) = {1 + [mZ(∆t)−m− r − q]dt}πt + [µZ(∆t)− wt]dt

= [1− (r + q)dt]πt −mπt[1− Z(∆t)]dt+ [µZ(∆t)− wt]dt

so that

∆t−dt = F(∆t, wt; dt, T )

and

πt−dt = G(∆t, πt, wt; dt, T ).

Define

Π̂t−dt(∆t−dt) = max
∆t,πt

G(∆t, πt, ŵt; dt, T ) (B.5)

s.t. (∆t, πt) ∈ Ωt;dt,T

F(∆t, ŵt; dt, T ) ≥ ∆t−dt.

Note that Lemma 1 and Lemma 2 remains completely unchanged with exogenous monitor-

ing. As before we proceed by contradiction to prove the concavity of Π̂t−dt(∆t−dt). Equation

(B.4) also remains unchanged. Thus, as before, if Π̂t−dt(∆t−dt) fails to be weakly concave

globally, then there must be at least one pair of points on (∆†, Π̂t−dt(∆
†)) and (∆‡, Π̂t−dt(∆

‡)),

with ∆‡ > ∆† and both at a locally concave part of the curve, which share a tangent line,

with points at all the values of ∆t−dt ∈ (∆†,∆‡) strictly below that shared tangent line

Focusing on the pair of this type that has the lowest value of ∆†, let (∆I , πI) be a point on
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the (∆, π) Efficient Frontier at time t from which (∆†, Π̂t−dt(∆
†)) is reachable with wt = ŵ.

Likewise, let (∆II , πII) be a point on the (∆, π) Efficient Frontier at time t from which

(∆‡, Π̂t−dt(∆
‡)) is reachable with wt = ŵ.

Define:

F(θ) = F((1− θ)∆I + θ∆II , ŵ; dt, T )

G(θ) = G((1− θ)∆I + θ∆II , (1− θ)πI + θπII , ŵ; dt, T ).

The statement of Lemma 3 remains unchanged. The proof also directly follows from the

definition of of Π̂t−dt in the maximization problem (B.5).

All that remains is to show that (F(θ),G(θ)) parametrically traces out a curve above the

secant line between (∆†
t−dt, Π̂t−dt(∆

†
t−dt)) and (∆‡

t−dt, Π̂t−dt(∆
‡
t−dt)), which can be done much

more easily than in the endogenous case. As the slope of the curve parametrically traced

out by (F(θ),G(θ)) is:

G′(θ)

F′(θ)
.

we show that this ratio is negative and that it becomes more negative as θ increases. Taking

derivatives:

F(θ) = ((1− θ)∆I + θ∆II)[1− (ρ+ q)dt] + [u(ŵ)− ψ]dt

−mdt{((1− θ)∆I + θ∆II)[1− Z
(
(1− θ)∆I + θ∆II

)
]− v(Z

(
(1− θ)∆I + θ∆II

)
}

F′(θ) = (∆II −∆I)[1− (ρ+ q)dt]−m(∆II −∆I)[1− Z
(
(1− θ)xI + θ∆II

)
]dt

F′′(θ) = m(∆II −∆I)2Z ′((1− θ)∆I + θxII
)
dt,

As dt → 0, the first derivative is positive in the limit, as none of the factors multiplying dt

are unbounded. The second derivative is also positive and converges to zero as dt→ 0.
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Also,

G(θ) = [1− (r + q)dt]((1− θ)πI + θπII) + µZ((1− θ)∆I + θ∆II)dt

− ŵdt−m((1− θ)πI + θπII)
[
1− Z

(
(1− θ)∆I + θ∆II

)]
dt

G′(θ) = (πII − πI)[1− (r + q)dt] + (∆II −∆I)µZ ′((1− θ)∆I + θ∆II)dt

−m(πII − πI)
[
1− Z

(
(1− θ)∆I + θ∆II

)]
dt

+m(∆II −∆I)((1− θ)πI + θπII)Z ′((1− θ)∆I + θ∆II
)
dt

G′′(θ) = (∆II −∆I)2µZ ′′((1− θ)∆I + θ∆II)dt

+m(∆II −∆I)(πII − πI)Z ′′((1− θ)∆I + θ∆II)dt

+m(∆II −∆I)(πII − πI)Z ′((1− θ)∆I + θ∆II)dt

+m(∆II −∆I)2((1− θ)πI + θπII)Z ′′((1− θ)∆I + θ∆II
)
dt

In the limit as dt→ 0, the first derivative is clearly negative.

As before we need to show:

G′′(θ)− G′(θ)

F′(θ)
F′′(θ) < 0.

Since

F′(θ)

G′(θ)
=

πII − πI

∆II −∆I
+O(dt).

as dt→ 0,

G′′(θ)− G′(θ)

F′(θ)
F′′(θ) = G′′(θ)−

[( πII − πI

∆II −∆I

)
+O(dt)

]
F′′(θ)

= G′′(θ)−
( πII − πI

∆II −∆I

)
F′′(θ) +O(dt2)

73



Then,

dt−1
[
G′′(θ)−

( πII − πI

∆II −∆I

)
F′′(θ)

]
= (∆II −∆I)2µZ ′′((1− θ)∆I + θ∆II)dt

+m(∆II −∆I)(πII − πI)Z ′′((1− θ)∆I + θ∆II)dt

+m(∆II −∆I)2((1− θ)πI + θπII)Z ′′((1− θ)∆I + θ∆II
)
dt

This is negative as Z ′′ < 0.

B.2 Proof of Proposition 6

Proposition 6. Assume that the evolution of ∆, π and π + s∆ with worker tenure are

monotonic in the direction established by Proposition 2. Then, in steady state, on-the-job

training Tt is provided such that, once human capital ht begins to increase, it continually

increases with seniority.

(Proof.) First, consider the case when human capital h is fixed. From the integral equation

(31), we can see that higher ∆ with greater seniority leads to higher effort z, which in turn

raises the factor z in the integrand in the equation for it and reduces the attrition rate in

the discounting. All of these forces make the incentive to invest in training—and therefore

make training itself rise with seniority s, if the future path of subsequent human capital were

(counterfactually) held fixed.

Now, to see that, in steady state, once human capital begins to increase it must continue

to increase thereafter, consider two workers who were identical at hiring, but one was hired

shortly before the other. When the less senior worker is at the level of seniority where

human capital first begins to weakly increase (at hiring if human capital starts at zero), the

slightly more senior worker must have a higher level of human capital. So the less senior
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worker could only have a higher level of human capital thereafter by overtaking the more

senior worker in human capital. But the less senior worker can’t overtake the more senior

worker (which would mean human capital was declining at that point) and stay forever

ahead, because then higher human capital thereafter combined with all the forces discussed

above guarantees that investment in training is lower at the moment the level of human

capital is the same, contradicting the claim of overtaking by the less senior worker. And

the less senior worker can’t overtake the more senior worker at some point and then fall

behind later, because viewing the differential equation version of the equation for i from a

retrograde perspective,

−i̇ = [µt′ +m(πt′ + st′∆t′)]zt′φ
′(ht′)− (r + δ + a(m, z))i,

if there is a moment where i is lower for the more junior worker (as is needed for the more

junior worker’s human capital to be overtaken), and prior to that, there is a period of time

over which the more junior worker always has higher human capital, then i must be lower

for the more junior worker throughout that period and at its boundary, contradicting the

claim that the more junior worker pulled ahead at some point after having been behind.

Therefore, once the more junior worker is behind, the more junior worker will stay behind in

human capital. That in turn implies that the optimal contract has human capital increasing

to an asymptote, once it begins to first increase. And if human capital at hiring is zero (say,

because it is entirely firm-specific), then despite human capital being subject to depreciation,

the optimal path of training guarantees that human capital is (at least weakly) increasing

with seniority from hiring on.
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